Emerging deep learning methods for single-cell RNA-seq data analysis

被引:0
|
作者
Jie Zheng
Ke Wang
机构
[1] SchoolofInformationScienceandTechnology,ShanghaiTechUniversity
关键词
D O I
暂无
中图分类号
Q811.4 [生物信息论];
学科分类号
0711 ; 0831 ;
摘要
Deep learning is making major breakthrough in several areas of bioinformatics. Anticipating that this will occur soon for the single-cell RNA-seq data analysis, we review newly published deep learning methods that help tackle computational challenges. Autoencoders are found to be the dominant approach. However, methods based on deep generative models such as generative adversarial networks(GANs) are also emerging in this area.
引用
收藏
页码:247 / 254
页数:8
相关论文
共 50 条
  • [21] How deep is enough in single-cell RNA-seq?
    Aaron M Streets
    Yanyi Huang
    Nature Biotechnology, 2014, 32 : 1005 - 1006
  • [22] How deep is enough in single-cell RNA-seq?
    Streets, Aaron M.
    Huang, Yanyi
    NATURE BIOTECHNOLOGY, 2014, 32 (10) : 1005 - 1006
  • [23] A Global Similarity Learning for Clustering of Single-Cell RNA-Seq Data
    Zhu, Xiaoshu
    Guo, Lilu
    Xu, Yunpei
    Li, Hong-Dong
    Liao, Xingyu
    Wu, Fang-Xiang
    Peng, Xiaoqing
    2019 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2019, : 261 - 266
  • [24] Identifying Lung Cancer Cell Markers with Machine Learning Methods and Single-Cell RNA-Seq Data
    Huang, Guo-Hua
    Zhang, Yu-Hang
    Chen, Lei
    Li, You
    Huang, Tao
    Cai, Yu-Dong
    LIFE-BASEL, 2021, 11 (09):
  • [25] SCRABBLE: single-cell RNA-seq imputation constrained by bulk RNA-seq data
    Peng, Tao
    Zhu, Qin
    Yin, Penghang
    Tan, Kai
    GENOME BIOLOGY, 2019, 20 (1)
  • [26] SCRABBLE: single-cell RNA-seq imputation constrained by bulk RNA-seq data
    Tao Peng
    Qin Zhu
    Penghang Yin
    Kai Tan
    Genome Biology, 20
  • [27] Multiobjective Deep Clustering and Its Applications in Single-cell RNA-seq Data
    Wang, Yunhe
    Bian, Chuang
    Wong, Ka-Chun
    Li, Xiangtao
    Yang, Shengxiang
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2022, 52 (08): : 5016 - 5027
  • [28] scDFC: A deep fusion clustering method for single-cell RNA-seq data
    Hu, Dayu
    Liang, Ke
    Zhou, Sihang
    Tu, Wenxuan
    Liu, Meng
    Liu, Xinwang
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (04)
  • [29] Non-linear archetypal analysis of single-cell RNA-seq data by deep autoencoders
    Wang, Yuge
    Zhao, Hongyu
    PLOS COMPUTATIONAL BIOLOGY, 2022, 18 (04)
  • [30] deepMc: Deep Matrix Completion for Imputation of Single-Cell RNA-seq Data
    Mongia, Aanchal
    Sengupta, Debarka
    Majumdar, Angshul
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2020, 27 (07) : 1011 - 1019