On the Minimal Solutions of Variational Inequalities in Orlicz-Sobolev Spaces

被引:0
|
作者
Ge DONG
机构
[1] DepartmentofArtsandScienceTeaching,ShanghaiUniversityofMedicineandHealthSciences
关键词
D O I
暂无
中图分类号
O177 [泛函分析];
学科分类号
070104 ;
摘要
In this paper, the author studies the existence of the minimal nonnegative solutions of some elliptic variational inequalities in Orlicz-Sobolev spaces on bounded or unbounded domains. She gets some comparison results between different solutions as tools to pass to the limit in the problems and to show the existence of the minimal solutions of the variational inequalities on bounded domains or unbounded domains. In both cases,coercive and noncoercive operators are handled. The sufficient and necessary conditions for the existence of the minimal nonnegative solution of the noncoercive variational inequality on bounded domains are established.
引用
收藏
页码:333 / 356
页数:24
相关论文
共 50 条
  • [31] ON A ROBIN PROBLEM IN ORLICZ-SOBOLEV SPACES
    Avci, Mustafa
    Suslu, Kenan
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2019, 9 (02): : 246 - 256
  • [32] Removable Sets for Orlicz-Sobolev Spaces
    Karak, Nijjwal
    POTENTIAL ANALYSIS, 2015, 43 (04) : 675 - 694
  • [33] DISTANCE FUNCTIONS AND ORLICZ-SOBOLEV SPACES
    EDMUNDS, DE
    EDMUNDS, RM
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1986, 38 (05): : 1181 - 1198
  • [34] Extension in generalized Orlicz-Sobolev spaces
    Juusti, Jonne
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 522 (01)
  • [35] AN EXTENSION OPERATOR FOR ORLICZ-SOBOLEV SPACES
    DESOUZA, AJ
    ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 1981, 53 (01): : 9 - 12
  • [36] Composition operators in Orlicz-Sobolev spaces
    Menovshchikov, A. V.
    SIBERIAN MATHEMATICAL JOURNAL, 2016, 57 (05) : 849 - 859
  • [37] Fractional order Orlicz-Sobolev spaces
    Fernandez Bonder, Julian
    Salort, Ariel M.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 277 (02) : 333 - 367
  • [38] Interpolation operators in Orlicz-Sobolev spaces
    Diening, L.
    Ruzicka, M.
    NUMERISCHE MATHEMATIK, 2007, 107 (01) : 107 - 129
  • [39] A Harnack inequality in Orlicz-Sobolev spaces
    Arriagad, Waldo
    Huentutripay, Jorge
    STUDIA MATHEMATICA, 2018, 243 (02) : 117 - 137
  • [40] Removable Sets for Orlicz-Sobolev Spaces
    Nijjwal Karak
    Potential Analysis, 2015, 43 : 675 - 694