Computational methodology for ChIP-seq analysis

被引:0
|
作者
Hyunjin Shin [1 ]
Tao Liu [1 ]
Xikun Duan [2 ]
Yong Zhang [2 ]
XShirley Liu [1 ]
机构
[1] Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute/Harvard School of Public Health
[2] Department of Bioinformatics, School of Life Science and Technology, Tongji
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Chromatin immunoprecipitation coupled with massive parallel sequencing(ChIP-seq) is a powerful technology to identify the genome-wide locations of DNA binding proteins such as transcription factors or modifed histones. As more and more experimental laboratories are adopting ChIP-seq to unravel the transcriptional and epigenetic regulatory mechanisms, computational analyses of ChIP-seq also become increasingly comprehensive and sophisticated. In this article, we review current computational methodology for ChIP-seq analysis, recommend useful algorithms and workfows, and introduce quality control measures at different analytical steps. We also discuss how ChIP-seq could be integrated with other types of genomic assays, such as gene expression profling and genome-wide association studies,to provide a more comprehensive view of gene regulatory mechanisms in important physiological and pathological processes.
引用
收藏
页码:54 / 70
页数:17
相关论文
共 50 条
  • [21] ChIP-AP: an integrated analysis pipeline for unbiased ChIP-seq analysis
    Suryatenggara, Jeremiah
    Yong, Kol Jia
    Tenen, Danielle E.
    Tenen, Daniel G.
    Bassal, Mahmoud A.
    [J]. BRIEFINGS IN BIOINFORMATICS, 2022, 23 (01)
  • [22] ChIP-PED enhances the analysis of ChIP-seq and ChIP-chip data
    Wu, George
    Yustein, Jason T.
    McCall, Matthew N.
    Zilliox, Michael
    Irizarry, Rafael A.
    Zeller, Karen
    Dang, Chi V.
    Ji, Hongkai
    [J]. BIOINFORMATICS, 2013, 29 (09) : 1182 - 1189
  • [23] jMOSAiCS: joint analysis of multiple ChIP-seq datasets
    Xin Zeng
    Rajendran Sanalkumar
    Emery H Bresnick
    Hongda Li
    Qiang Chang
    Sündüz Keleş
    [J]. Genome Biology, 14
  • [24] An integrated ChIP-seq analysis platform with customizable workflows
    Eugenia G Giannopoulou
    Olivier Elemento
    [J]. BMC Bioinformatics, 12
  • [25] Principles of ChIP-seq Data Analysis Illustrated with Examples
    Ambrosini, Giovanna
    Dreos, Rene
    Bucher, Philipp
    [J]. PROCEEDINGS IWBBIO 2014: INTERNATIONAL WORK-CONFERENCE ON BIOINFORMATICS AND BIOMEDICAL ENGINEERING, VOLS 1 AND 2, 2014, : 682 - 694
  • [26] Model-based Analysis of ChIP-Seq (MACS)
    Yong Zhang
    Tao Liu
    Clifford A Meyer
    Jérôme Eeckhoute
    David S Johnson
    Bradley E Bernstein
    Chad Nusbaum
    Richard M Myers
    Myles Brown
    Wei Li
    X Shirley Liu
    [J]. Genome Biology, 9
  • [27] Practical Guidelines for the Comprehensive Analysis of ChIP-seq Data
    Bailey, Timothy
    Krajewski, Pawel
    Ladunga, Istvan
    Lefebvre, Celine
    Li, Qunhua
    Liu, Tao
    Madrigal, Pedro
    Taslim, Cenny
    Zhang, Jie
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2013, 9 (11)
  • [28] Model-based Analysis of ChIP-Seq (MACS)
    Zhang, Yong
    Liu, Tao
    Meyer, Clifford A.
    Eeckhoute, Jerome
    Johnson, David S.
    Bernstein, Bradley E.
    Nussbaum, Chad
    Myers, Richard M.
    Brown, Myles
    Li, Wei
    Liu, X. Shirley
    [J]. GENOME BIOLOGY, 2008, 9 (09)
  • [29] A comprehensive comparison of tools for differential ChIP-seq analysis
    Steinhauser, Sebastian
    Kurzawa, Nils
    Eils, Roland
    Herrmann, Carl
    [J]. BRIEFINGS IN BIOINFORMATICS, 2016, 17 (06) : 953 - 966
  • [30] jMOSAiCS: joint analysis of multiple ChIP-seq datasets
    Zeng, Xin
    Sanalkumar, Rajendran
    Bresnick, Emery H.
    Li, Hongda
    Chang, Qiang
    Keles, Suenduez
    [J]. GENOME BIOLOGY, 2013, 14 (04):