The eXtended virtual element method for elliptic problems with weakly singular solutions

被引:0
|
作者
Droniou J. [1 ,2 ]
Manzini G. [3 ]
Yemm L. [2 ]
机构
[1] IMAG, Univ. Montpellier, CNRS, Montpellier
[2] School of Mathematics, Monash University, Clayton
[3] T-5, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM
基金
欧洲研究理事会; 澳大利亚研究理事会;
关键词
Corner singularities; Enriched method; Error analysis; Fractured domains; Polytopal method; X-VEM;
D O I
10.1016/j.cma.2024.117129
中图分类号
学科分类号
摘要
This paper introduces a novel eXtended virtual element method, an extension of the conforming virtual element method. The X-VEM is formulated by incorporating appropriate enrichment functions in the local spaces. The method is designed to handle highly generic enrichment functions, including singularities arising from fractured domains. By achieving consistency on the enrichment space, the method is proven to achieve arbitrary approximation orders even in the presence of singular solutions. The paper includes a complete convergence analysis under general assumptions on mesh regularity, and numerical experiments validating the method's accuracy on various mesh families, demonstrating optimal convergence rates in the L2- and H1-norms on fractured or L-shaped domains. © 2024
引用
收藏
相关论文
共 50 条
  • [31] On the existence and multiplicity of solutions for a class of singular elliptic problems
    Jalilian, Y.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 68 (06) : 664 - 680
  • [32] A PSEUDODIFFERENTIAL METHOD FOR ELLIPTIC SINGULAR PERTURBATION PROBLEMS
    GRUBB, G
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1985, 301 (09): : 427 - 430
  • [33] Qualitative properties of singular solutions to semilinear elliptic problems
    Esposito, F.
    Farina, A.
    Sciunzi, B.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 265 (05) : 1962 - 1983
  • [34] EXISTENCE AND REGULARITY OF WEAK SOLUTIONS FOR SINGULAR ELLIPTIC PROBLEMS
    Bougherara, Brahim
    Giacomoni, Jacques
    Hernandez, Jesus
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, : 19 - 30
  • [35] INFINITE ELEMENT METHOD FOR ELLIPTIC PROBLEMS
    应隆安
    Science China Mathematics, 1991, (12) : 1438 - 1447
  • [36] INFINITE ELEMENT METHOD FOR ELLIPTIC PROBLEMS
    YING, LA
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1991, 34 (12): : 1438 - 1447
  • [38] Extrapolation techniques for computing accurate solutions of elliptic problems with singular solutions
    Koestler, H
    Ruede, U
    COMPUTATIONAL SCIENCE - ICCS 2004, PROCEEDINGS, 2004, 3039 : 410 - 417
  • [39] A Nitsche’s Extended Conforming Virtual Element Method for Stokes Interface Problems
    Huang, Yuxiang
    Chen, Jinru
    Wang, Feng
    Journal of Scientific Computing, 2025, 102 (01)
  • [40] Conforming and nonconforming virtual element methods for elliptic problems
    Cangiani, Andrea
    Manzini, Gianmarco
    Sutton, Oliver J.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2017, 37 (03) : 1317 - 1354