The eXtended virtual element method for elliptic problems with weakly singular solutions

被引:0
|
作者
Droniou J. [1 ,2 ]
Manzini G. [3 ]
Yemm L. [2 ]
机构
[1] IMAG, Univ. Montpellier, CNRS, Montpellier
[2] School of Mathematics, Monash University, Clayton
[3] T-5, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM
基金
欧洲研究理事会; 澳大利亚研究理事会;
关键词
Corner singularities; Enriched method; Error analysis; Fractured domains; Polytopal method; X-VEM;
D O I
10.1016/j.cma.2024.117129
中图分类号
学科分类号
摘要
This paper introduces a novel eXtended virtual element method, an extension of the conforming virtual element method. The X-VEM is formulated by incorporating appropriate enrichment functions in the local spaces. The method is designed to handle highly generic enrichment functions, including singularities arising from fractured domains. By achieving consistency on the enrichment space, the method is proven to achieve arbitrary approximation orders even in the presence of singular solutions. The paper includes a complete convergence analysis under general assumptions on mesh regularity, and numerical experiments validating the method's accuracy on various mesh families, demonstrating optimal convergence rates in the L2- and H1-norms on fractured or L-shaped domains. © 2024
引用
收藏
相关论文
共 50 条
  • [1] An extended virtual element method for elliptic interface problems
    Zheng, Xianyan
    Chen, Jinru
    Wang, Feng
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 156 : 87 - 102
  • [2] A Nonconforming Extended Virtual Element Method for Elliptic Interface Problems
    Zheng, Xianyan
    Chen, Jinru
    Wang, Feng
    JOURNAL OF SCIENTIFIC COMPUTING, 2024, 101 (02)
  • [3] Virtual element method for quasilinear elliptic problems
    Cangiani, A.
    Chatzipantelidis, P.
    Diwan, G.
    Georgoulis, E. H.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2020, 40 (04) : 2450 - 2472
  • [4] The nonconforming virtual element method for semilinear elliptic problems
    Xiao, Liuchao
    Zhou, Meng
    Zhao, Jikun
    APPLIED MATHEMATICS AND COMPUTATION, 2022, 433
  • [5] The nonconforming virtual element method for semilinear elliptic problems
    Xiao, Liuchao
    Zhou, Meng
    Zhao, Jikun
    Applied Mathematics and Computation, 2022, 433
  • [6] On the finite element method for elliptic problems with degenerate and singular coefficients
    Arroyo, Daniel
    Bespalov, Alexei
    Heuer, Norbert
    MATHEMATICS OF COMPUTATION, 2007, 76 (258) : 509 - 537
  • [7] Finite element method for solving problems with singular solutions
    Babuska, I
    Andersson, B
    Guo, B
    Melenk, JM
    Oh, HS
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1996, 74 (1-2) : 51 - 70
  • [8] An extended mixed finite element method for elliptic interface problems
    Can, Pei
    Chen, Jinru
    Wang, Feng
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2022, 113 : 148 - 159
  • [9] Virtual element method for semilinear elliptic problems on polygonal meshes
    Adak, D.
    Natarajan, S.
    Natarajan, E.
    APPLIED NUMERICAL MATHEMATICS, 2019, 145 : 175 - 187
  • [10] A nonconforming immersed virtual element method for elliptic interface problems
    Park, Hyeokjoo
    Kwak, Do Young
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2023, 57 (06) : 3615 - 3636