Statistical Inference for Lognormal Distribution with Type-I Progressive Hybrid Censored Data

被引:7
|
作者
Sen T. [1 ]
Singh S. [1 ]
Tripathi Y.M. [1 ]
机构
[1] Department of Mathematics, Indian Institute of Technology, Patna, Bihar
关键词
EM algorithm; equal-tail interval; HPD interval; MH algorithm; optimal censoring; prediction;
D O I
10.1080/01966324.2018.1484826
中图分类号
学科分类号
摘要
SYNOPTIC ABSTRACT: This article deals with problems of estimation and prediction under classical and Bayesian approaches when lifetime data following a lognormal distribution are observed under type-I progressive hybrid censoring. We first obtain maximum likelihood estimates, Bayes estimates, and corresponding interval estimates of unknown lognormal parameters. We then develop predictors to predict censored observations and construct prediction intervals. Further, we analyze two real data sets and conduct a simulation study to compare the performance of proposed methods of estimation and prediction. Finally, optimal censoring schemes are constructed under cost constraints and a conclusion is presented. © 2018, © 2018 Taylor & Francis Group, LLC.
引用
收藏
页码:70 / 95
页数:25
相关论文
共 50 条
  • [31] Exact Inference on Weibull Parameters With Multiply Type-I Censored Data
    Jia, Xiang
    Nadarajah, Saralees
    Guo, Bo
    [J]. IEEE TRANSACTIONS ON RELIABILITY, 2018, 67 (02) : 432 - 445
  • [32] Inference on the reliability of inverse Weibull with multiply Type-I censored data
    Mou, Zhengcheng
    Liu, Guojun
    Chiang, Jyun-You
    Chen, Sihong
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2024, 94 (10) : 2189 - 2209
  • [33] Exact inference for progressively Type-I censored exponential failure data
    Balakrishnan, N.
    Han, Donghoon
    Iliopoulos, G.
    [J]. METRIKA, 2011, 73 (03) : 335 - 358
  • [34] Exact inference for progressively Type-I censored exponential failure data
    N. Balakrishnan
    Donghoon Han
    G. Iliopoulos
    [J]. Metrika, 2011, 73 : 335 - 358
  • [35] Exact Inference for a Simple Step-stress Model with Generalized Type-I Hybrid Censored Data from the Exponential Distribution
    Shafay, A. R.
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2016, 45 (01) : 181 - 206
  • [36] E-Bayesian Estimation for the Weibull Distribution under Adaptive Type-I Progressive Hybrid Censored Competing Risks Data
    Okasha, Hassan
    Mustafa, Abdelfattah
    [J]. ENTROPY, 2020, 22 (08)
  • [37] Statistical Inference for Type-I Generalized Birnbaum–Saunders Distribution
    Wang R.
    Sha N.
    Xu X.
    [J]. Journal of the Indian Society for Probability and Statistics, 2018, 19 (2) : 469 - 487
  • [38] Exact likelihood inference based on Type-I and Type-II hybrid censored samples from the exponential distribution
    A. Childs
    B. Chandrasekar
    N. Balakrishnan
    D. Kundu
    [J]. Annals of the Institute of Statistical Mathematics, 2003, 55 : 319 - 330
  • [39] Exact likelihood inference based on Type-I and Type-II hybrid censored samples from the exponential distribution
    Childs, A
    Chandrasekar, B
    Balakrishnan, N
    Kundu, D
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2003, 55 (02) : 319 - 330
  • [40] Inference based on progressive Type I interval censored data from log-normal distribution
    Roy, Soumya
    Gijo, E. V.
    Pradhan, Biswabrata
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (08) : 6495 - 6512