Prediction of tunnel boring machine operating parameters using various machine learning algorithms

被引:0
|
作者
Xu, Chen [1 ]
Liu, Xiaoli [1 ,2 ]
Wang, Enzhi [1 ,2 ]
Wang, Sijing [1 ,2 ,3 ]
机构
[1] State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing,100084, China
[2] Sanjiangyuan Collaborative Innovation Center, Tsinghua University, Beijing,100084, China
[3] Institute of Geology and Geophysics of the Chinese Academy of Sciences, Beijing,100029, China
关键词
The National Key Research and Development Plan (Grant No. 2018YFC1504902); and the National Natural Science Foundation of China (Grant No. 52079068; 51479094; 41772246) are gratefully acknowledged. The data are from the National Program on Key Basic Research Project (973 Program) (Grant No. 2015CB058100);
D O I
暂无
中图分类号
学科分类号
摘要
44
引用
收藏
相关论文
共 50 条
  • [21] Prediction of geological conditions for a tunnel boring machine using big operational data
    Zhang, Qianli
    Liu, Zhenyu
    Tan, Jianrong
    AUTOMATION IN CONSTRUCTION, 2019, 100 : 73 - 83
  • [22] Age group prediction with panoramic radiomorphometric parameters using machine learning algorithms
    Lee, Yeon-Hee
    Won, Jong Hyun
    Auh, Q-Schick
    Noh, Yung-Kyun
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [23] Machine learning forecasting models of disc cutters life of tunnel boring machine
    Mahmoodzadeh, Arsalan
    Mohammadi, Mokhtar
    Ibrahim, Hawkar Hashim
    Abdulhamid, Sazan Nariman
    Ali, Hunar Farid Hama
    Hasan, Ahmed Mohammed
    Khishe, Mohammad
    Mahmud, Hoger
    AUTOMATION IN CONSTRUCTION, 2021, 128
  • [24] An investigation of machine learning algorithms for prediction of temporomandibular disorders by using clinical parameters
    Yildiz, Nazim Tolgahan
    Kocaman, Hikmet
    Yildirim, Hasan
    Canli, Mehmet
    MEDICINE, 2024, 103 (41)
  • [25] Prediction of battery critical parameters using machine learning algorithms for electric vehicles
    Hegde, Vasudha
    Sohal, Jaskaran Singh
    Balaraman, Gopi
    Karn, Aayush
    Pandey, Kumar Bhaskar
    INTERNATIONAL JOURNAL OF ELECTRIC AND HYBRID VEHICLES, 2024, 16 (03) : 247 - 260
  • [26] Age group prediction with panoramic radiomorphometric parameters using machine learning algorithms
    Yeon-Hee Lee
    Jong Hyun Won
    Q.-Schick Auh
    Yung-Kyun Noh
    Scientific Reports, 12
  • [27] Machine learning forecasting models of disc cutters life of tunnel boring machine
    Mahmoodzadeh, Arsalan
    Mohammadi, Mokhtar
    Hashim Ibrahim, Hawkar
    Nariman Abdulhamid, Sazan
    Farid Hama Ali, Hunar
    Mohammed Hasan, Ahmed
    Khishe, Mohammad
    Mahmud, Hoger
    Automation in Construction, 2021, 128
  • [28] Tunnel boring machine development
    Herrenknecht, Martin
    Baeppler, Karin
    NORTH AMERICAN TUNNELING 2008, PROCEEDINGS, 2008, : 52 - +
  • [29] Treatment and analysis of the performance parameters of a tunnel-boring machine
    Denis, A
    Cremoux, F
    CANADIAN GEOTECHNICAL JOURNAL, 2002, 39 (02) : 451 - 462
  • [30] Artificial intelligence for tunnel boring machine penetration rate prediction
    Flor, A.
    Sassi, F.
    La Morgia, M.
    Cernera, F.
    Amadini, F.
    Mei, A.
    Danzi, A.
    TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY, 2023, 140