Prediction of tunnel boring machine operating parameters using various machine learning algorithms

被引:0
|
作者
Xu, Chen [1 ]
Liu, Xiaoli [1 ,2 ]
Wang, Enzhi [1 ,2 ]
Wang, Sijing [1 ,2 ,3 ]
机构
[1] State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing,100084, China
[2] Sanjiangyuan Collaborative Innovation Center, Tsinghua University, Beijing,100084, China
[3] Institute of Geology and Geophysics of the Chinese Academy of Sciences, Beijing,100029, China
关键词
The National Key Research and Development Plan (Grant No. 2018YFC1504902); and the National Natural Science Foundation of China (Grant No. 52079068; 51479094; 41772246) are gratefully acknowledged. The data are from the National Program on Key Basic Research Project (973 Program) (Grant No. 2015CB058100);
D O I
暂无
中图分类号
学科分类号
摘要
44
引用
收藏
相关论文
共 50 条
  • [1] Prediction of tunnel boring machine operating parameters using various machine learning algorithms
    Xu, Chen
    Liu, Xiaoli
    Wang, Enzhi
    Wang, Sijing
    TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY, 2021, 109
  • [2] Soil Classification by Machine Learning Using a Tunnel Boring Machine's Operating Parameters
    Kang, Tae-Ho
    Choi, Soon-Wook
    Lee, Chulho
    Chang, Soo-Ho
    APPLIED SCIENCES-BASEL, 2022, 12 (22):
  • [3] Performance prediction and sensitivity analysis of tunnel boring machine in various geological conditions using an ensemble extreme learning machine
    Jia, Lianhui
    Jiang, Lijie
    Wen, Yongliang
    Wu, Jiulin
    Wang, Heng
    Automation in Construction, 2025, 175
  • [4] Supervised Machine Learning Techniques to the Prediction of Tunnel Boring Machine Penetration Rate
    Xu, Hai
    Zhou, Jian
    Asteris, Panagiotis G.
    Armaghani, Danial Jahed
    Tahir, Mahmood Md
    APPLIED SCIENCES-BASEL, 2019, 9 (18):
  • [5] Several models for tunnel boring machine performance prediction based on machine learning
    Mahmoodzadeh, Arsalan
    Nejati, Hamid Reza
    Ibrahim, Hawkar Hashim
    Ali, Hunar Farid Hama
    Mohammed, Adil Hussein
    Rashidi, Shima
    Majeed, Mohammed Kamal
    GEOMECHANICS AND ENGINEERING, 2022, 30 (01) : 75 - 91
  • [6] Prediction of Optimum Operating Parameters to Enhance the Performance of PEMFC Using Machine Learning Algorithms
    Arunadevi, M.
    Karthikeyan, B.
    Shrihari, Anirudh
    Saravanan, S.
    Sundararaju, K.
    Palanisamy, R.
    Awad, Mohamed
    Mahmoud, Mohamed Metwally
    Wapet, Daniel Eutyche Mbadjoun
    Al Ayidh, Abdulrahman
    Hussein, Hany S.
    Hussein, Mahmoud M.
    Omar, Ahmed I.
    ENERGY EXPLORATION & EXPLOITATION, 2025, 43 (02) : 676 - 698
  • [7] As-Encountered Prediction of Tunnel Boring Machine Performance Parameters using Recurrent Neural Networks
    Nagrecha, Kabir
    Fisher, Luis
    Mooney, Michael
    Rodriguez-Nikl, Tonatiuh
    Mazari, Mehran
    Pourhomayoun, Mohammad
    TRANSPORTATION RESEARCH RECORD, 2020, 2674 (10) : 241 - 249
  • [8] Major earthquake event prediction using various machine learning algorithms
    Mallouhy, Roxane
    Abou Jaoude, Chady
    Guyeux, Christophe
    Makhoul, Abdallah
    2019 INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGIES FOR DISASTER MANAGEMENT (ICT-DM 2019), 2019,
  • [9] Prediction method of rockmass parameters based on tunnelling process of tunnel boring machine
    Zhang N.
    Li J.-B.
    Jing L.-J.
    Yang C.
    Chen S.
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2019, 53 (10): : 1977 - 1985
  • [10] The development of rock mass parameters for use in the prediction of tunnel boring machine performance
    Laughton, C
    Nelson, PP
    EUROCK '96/TORINO/ITALY - PREDICTION AND PERFORMANCE IN ROCK MECHANICS AND ROCK ENGINEERING, PROCEEDINGS, VOLS 1 AND 2, 1996, : 727 - 733