Energy absorption characteristics of modular assembly structures under quasi-static compression load

被引:1
|
作者
Li Q. [1 ]
Wang W. [1 ]
Tan H. [2 ]
Long X. [2 ]
Wang F. [1 ]
Hu L. [1 ]
机构
[1] College of Automotive and Mechanical Engineering, Changsha University of Science & Technology, Changsha
[2] State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, Hunan University, Changsha
基金
中国国家自然科学基金;
关键词
Energy absorption; Modular assembly structures; Parameterization; Quasi-static compression load;
D O I
10.1016/j.compstruct.2024.118260
中图分类号
学科分类号
摘要
Inspired by the assembly of building blocks, an innovative modular assembly structure (MAS) is proposed. With its modular design and versatility, MAS can be tailored to diverse working environments and task requirements. A prototype MAS is generated through three-dimensional (3D) printing, and subsequent compression tests consistently display energy absorption performance akin to a finite element model, affirming the validity of the simulations. Multiple MASs are obtained through the assembly of oblique cross cells, and the effect of compression direction on the energy absorption capacity of MASs is discussed. It is found that transverse compression outperforms longitudinal compression in energy absorption, and MAS with four cells and transverse loading demonstrates the highest specific energy absorption (SEA) value. Furthermore, quadrilateral, pentagonal, and hexagonal cells are proposed to obtain more MASs, and the compression performance of these MASs is evaluated by varying the frame structure thickness d and supporting structure thickness j of cells. Results highlight the superior energy absorption efficiency of the pentagonal element structure. Notably, parameter d has a more pronounced impact on energy absorption compared with parameter j. When j is 2.0 mm and d increases from 1.0 mm to 2.0 mm, the SEA values of quadrilateral, pentagonal, and hexagonal MASs increase by 113.70, 139.45, and 86.25 J/kg. In summary, MASs exhibit impressive energy absorption capabilities, promising versatile applications in energy absorption and anti-collision mechanisms across various scenarios. © 2024 Elsevier Ltd
引用
收藏
相关论文
共 50 条
  • [21] Energy absorption of braided composite tubes under quasi-static combined shear-compression loading
    Hwang, Yong-Ha
    Park, Ill Kyung
    Han, Jae-Hung
    ADVANCED COMPOSITE MATERIALS, 2024,
  • [22] Numerical studies of aluminum foam filled energy absorption connectors under quasi-static compression loading
    Wang, Yonghui
    Zhai, Ximei
    Wang, Wei
    THIN-WALLED STRUCTURES, 2017, 116 : 225 - 233
  • [23] Effect of grain orientation on the energy absorption performance of Chinese fir wood under quasi-static compression
    Kong, Jing
    Lyu, Wenhua
    Xu, Shiyu
    Yang, Zhiyi
    WOOD MATERIAL SCIENCE & ENGINEERING, 2024,
  • [24] Energy absorption of braided composite tubes under quasi-static combined shear-compression loading
    Hwang, Yong-Ha
    Park, Ill Kyung
    Han, Jae-Hung
    Advanced Composite Materials, 2024,
  • [25] Energy absorption performance of woven metallic lattices with orthogonal spiral wires under quasi-static compression
    Wu, Fang
    Lin, Congcong
    Ge, Shaoxiang
    Xue, Xin
    THIN-WALLED STRUCTURES, 2024, 202
  • [26] Energy absorption mechanism of filament wound composite sandwich cylinder under quasi-static compression loading
    Zhou X.
    Mei Z.
    Wu F.
    Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 2017, 34 (08): : 1764 - 1771
  • [27] Energy absorption structure with negative stepped plateau force characteristics under quasi-static loads
    Wang, Xin
    Zou, Liuxiao
    Cai, Chaocan
    Wang, Ruojun
    Huang, Xin
    Zou, Huiran
    Yang, Minglong
    Jiang, Zengyan
    Yin, Weilong
    Thin-Walled Structures, 2024, 205
  • [28] Quasi-static compression experimental study on energy absorption characteristics of multicellular structures filled with carbon fiber reinforced epoxy composite tubes
    Wang X.
    Zhang Z.
    Ma D.
    Gao Y.
    Wang X.
    Wang S.
    Mi Y.
    Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 2021, 38 (09): : 2887 - 2896
  • [29] Crushing behavior and energy absorption of steel-GFRP-foam sandwich structures under quasi-static compression: Experimental and theoretical study
    Cheng, Yi
    Wang, Wenwei
    Zhou, Chang
    Liang, Baichun
    Liang, Liang
    Zhao, Qiang
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 443
  • [30] Numerical and experimental study of energy absorption of PLA calibrated honeycomb structures under quasi-static loading
    Hashemi, Sayedshahabodin
    Galehdari, Seyed Ali
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2024, 46 (01)