Forecasting COVID-19 pandemic using an echo state neural network-based framework

被引:0
|
作者
Larcher, José Henrique Kleinübing [1 ]
Da Silva, Ramon Gomes [2 ]
Ribeiro, Matheus Henrique Dal Molin [2 ,3 ]
Dos Santos Coclho, Leandro [1 ,4 ]
Mariani, Viviana Cocco [1 ,4 ]
机构
[1] Pontifical Catholic University of Parana (PUCPR), Mechanical Engineering Graduate Program (PPGEM), Curitiba, Brazil
[2] Pontifical Catholic University of Parana (PUCPR), Industrial Systems Engineering Graduate Program (PPGEPS), Curitiba, Brazil
[3] Department of Mathematics, Federal University of Technology - Parana (UTFPR), Pato Branco, Parana, Brazil
[4] Department of Electrical Engineering, Federal University of Parana (UFPR), Curitiba, Parana, Brazil
关键词
Auto-regressive - Autoregressive integrated moving average - Coronavirus disease 2019 - Coronaviruses - Echo state networks - Mean absolute error - Moving averages - Percentage error - Root mean square errors - Times series;
D O I
暂无
中图分类号
学科分类号
摘要
38
引用
收藏
相关论文
共 50 条
  • [41] Analyst forecasting during COVID-19 pandemic
    Hao, Rubin
    Xue, Jing
    Yau, Ling Na Belinda
    Zhang, Chunqiu
    MANAGERIAL AUDITING JOURNAL, 2022, 37 (03) : 380 - 405
  • [42] Modeling and forecasting the COVID-19 pandemic in India
    Sarkar, Kankan
    Khajanchi, Subhas
    Nieto, Juan J.
    CHAOS SOLITONS & FRACTALS, 2020, 139 (139)
  • [43] Detection of COVID-19 from CT scan images: A spiking neural network-based approach
    Garain, Avishek
    Basu, Arpan
    Giampaolo, Fabio
    Velasquez, Juan D.
    Sarkar, Ram
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (19): : 12591 - 12604
  • [44] Detection of COVID-19 from CT scan images: A spiking neural network-based approach
    Avishek Garain
    Arpan Basu
    Fabio Giampaolo
    Juan D. Velasquez
    Ram Sarkar
    Neural Computing and Applications, 2021, 33 : 12591 - 12604
  • [45] COVID-19 Patients Benefitting From Remdesivir for Improved Survival: A Neural Network-Based Approach
    Garcia-Vidal, Carolina
    Teijon-Lumbreras, Christian
    Aiello, Tommaso Francesco
    Chumbita, Mariana
    Menendez, Rosario
    Subira, Aina Mateu
    Peyrony, Olivier
    Monzo-Gallo, Patricia
    Gallardo-Pizarro, Antonio
    Mendez, Raul
    Calbo Sebastian, Esther
    Ballestero-Tellez, Monica
    Cuesta-Chasco, Genoveva
    Martinez, Jose Antonio
    Marcos, Maria Angeles
    Mensa, Josep
    Soriano, Alex
    JOURNAL OF MEDICAL VIROLOGY, 2025, 97 (03)
  • [46] A dynamic Bayesian network-based emergency decision-making framework highlighting emergency propagations: Illustrated using the Fukushima nuclear accidents and the Covid-19 pandemic
    Cai, Yinan
    Golay, Michael W.
    RISK ANALYSIS, 2023, 43 (03) : 480 - 497
  • [47] Network-based community detection of early-stage COVID-19 pandemic based on the international geographical distance
    Bagci Das, Duygu
    Isik, Zerrin
    SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 2023, 41 (04): : 665 - 676
  • [48] In silico drug repurposing in COVID-19: A network-based analysis
    Sibilio, Pasquale
    Bini, Simone
    Fiscon, Giulia
    Sponziello, Marialuisa
    Conte, Federica
    Pecce, Valeria
    Durante, Cosimo
    Paci, Paola
    Falcone, Rosa
    Norata, Giuseppe Danilo
    Farina, Lorenzo
    Verrienti, Antonella
    BIOMEDICINE & PHARMACOTHERAPY, 2021, 142
  • [49] NNPCov19: Artificial Neural Network-Based Propaganda Identification on Social Media in COVID-19 Era
    Khanday, Akib Mohi Ud Din
    Bhushan, Bharat
    Jhaveri, Rutvij H.
    Khan, Qamar Rayees
    Raut, Roshani
    Rabani, Syed Tanzeel
    MOBILE INFORMATION SYSTEMS, 2022, 2022
  • [50] Effective Social Network-Based Allocation of COVID-19 Vaccines
    Chen, Jiangzhuo
    Hoops, Stefan
    Marathe, Achla
    Mortveit, Henning
    Lewis, Bryan
    Venkatramanan, Srinivasan
    Haddadan, Arash
    Bhattacharya, Parantapa
    Adiga, Abhijin
    Vullikanti, Anil
    Srinivasan, Aravind
    Wilson, Mandy L.
    Ehrlich, Gal
    Fenster, Maier
    Barrett, Christopher
    Eubank, Stephen
    Marathe, Madhav
    PROCEEDINGS OF THE 28TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2022, 2022, : 4675 - 4683