Nonconvex ADMM for Rank-Constrained Matrix Sensing Problem

被引:0
|
作者
Liu, Zekun [1 ]
机构
[1] School of Mathematical Sciences, Shanghai Jiao Tong University, China
来源
arXiv | 2023年
关键词
Compilation and indexing terms; Copyright 2024 Elsevier Inc;
D O I
暂无
中图分类号
学科分类号
摘要
Least squares approximations
引用
下载
收藏
相关论文
共 50 条
  • [41] Maximum Likelihood Line Spectral Estimation in the Signal Domain: A Rank-Constrained Structured Matrix Recovery Approach
    Wu, Xunmeng
    Yang, Zai
    Stoica, Petre
    Xu, Zongben
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2022, 70 : 4156 - 4169
  • [42] Autdcalibration via rank-constrained estimation of the absolute quadric
    Chandraker, Manmohan
    Agarwal, Sarneer
    Kahl, Fredrik
    Nister, David
    Kriegman, David
    2007 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-8, 2007, : 747 - +
  • [43] Solving rank-constrained semidefinite programs in exact arithmetic
    Naldi, Simone
    JOURNAL OF SYMBOLIC COMPUTATION, 2018, 85 : 206 - 223
  • [44] Rank-Constrained Fundamental Matrix Estimation by Polynomial Global Optimization Versus the Eight-Point Algorithm
    Bugarin, Florian
    Bartoli, Adrien
    Henrion, Didier
    Lasserre, Jean-Bernard
    Orteu, Jean-Jose
    Sentenac, Thierry
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2015, 53 (01) : 42 - 60
  • [45] Compressing Deep Neural Networks using a Rank-Constrained Topology
    Nakkiran, Preetum
    Alvarez, Raziel
    Prabhavalkar, Rohit
    Parada, Carolina
    16TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2015), VOLS 1-5, 2015, : 1473 - 1477
  • [46] Rank-Constrained Separable Semidefinite Programming for Optimal Beamforming Design
    Huang, Yongwei
    Palomar, Daniel P.
    2009 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1- 4, 2009, : 2432 - 2436
  • [47] A nonconvex nonsmooth regularization method for compressed sensing and low rank matrix completion
    Cui, Zhuo-Xu
    Fan, Qibin
    DIGITAL SIGNAL PROCESSING, 2017, 62 : 101 - 111
  • [48] Distributed and Parallel ADMM for Structured Nonconvex Optimization Problem
    Wang, Xiangfeng
    Yan, Junchi
    Jin, Bo
    Li, Wenhao
    IEEE TRANSACTIONS ON CYBERNETICS, 2021, 51 (09) : 4540 - 4552
  • [49] Maximum Likelihood Line Spectral Estimation in the Signal Domain: A Rank-Constrained Structured Matrix Recovery Approach
    Wu, Xunmeng
    Yang, Zai
    Stoica, Petre
    Xu, Zongben
    IEEE Transactions on Signal Processing, 2022, 70 : 4156 - 4169
  • [50] Rank-Constrained Fundamental Matrix Estimation by Polynomial Global Optimization Versus the Eight-Point Algorithm
    Florian Bugarin
    Adrien Bartoli
    Didier Henrion
    Jean-Bernard Lasserre
    Jean-José Orteu
    Thierry Sentenac
    Journal of Mathematical Imaging and Vision, 2015, 53 : 42 - 60