ARGA-Unet: Advanced U-net segmentation model using residual grouped convolution and attention mechanism for brain tumor MRI image segmentation

被引:1
|
作者
XUN S. [1 ]
ZHANG Y. [2 ]
DUAN S. [3 ]
WANG M. [4 ,5 ,6 ]
CHEN J. [7 ,8 ,9 ]
TONG T. [10 ]
GAO Q. [10 ]
LAM C. [1 ]
HU M. [8 ]
TAN T. [1 ]
机构
[1] Faculty of Applied Sciences, Macao Polytechnic University, Macao
[2] Jinan Branch of China Telecom Co. Ltd., Jinan
[3] School of Physics and Electronics, Shandong Normal University, Jinan
[4] Department of Dardiovascular Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou
[5] Clinical School of Medicine, Hangzhou Normal University, Hangzhou
[6] Hangzhou Institute of Cardiovascular Diseases, Hangzhou
[7] Shanghai Key Laboratory of Multidimensional Information Processing, Shanghai
[8] School of Communication & Electronic Engineering, East China Normal University, Shanghai
[9] Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai
[10] College of Physics and Information Engineering, Fuzhou University, Fuzhou
来源
关键词
Attention mechanism; Brain tumor; Deep learning; MRI; Segmentation; U-net;
D O I
10.1016/j.vrih.2023.05.001
中图分类号
学科分类号
摘要
Background: Magnetic resonance imaging (MRI) has played an important role in the rapid growth of medical imaging diagnostic technology, especially in the diagnosis and treatment of brain tumors owing to its non-invasive characteristics and superior soft tissue contrast. However, brain tumors are characterized by high non-uniformity and non-obvious boundaries in MRI images because of their invasive and highly heterogeneous nature. In addition, the labeling of tumor areas is time-consuming and laborious. Methods: To address these issues, this study uses a residual grouped convolution module, convolutional block attention module, and bilinear interpolation upsampling method to improve the classical segmentation network U-net. The influence of network normalization, loss function, and network depth on segmentation performance is further considered. Results: In the experiments, the Dice score of the proposed segmentation model reached 97.581%, which is 12.438% higher than that of traditional U-net, demonstrating the effective segmentation of MRI brain tumor images. Conclusions: In conclusion, we use the improved U-net network to achieve a good segmentation effect of brain tumor MRI images. © 2023 Beijing Zhongke Journal Publishing Co. Ltd
引用
收藏
页码:203 / 216
页数:13
相关论文
共 50 条
  • [41] Efficient U-Net Architecture with Multiple Encoders and Attention Mechanism Decoders for Brain Tumor Segmentation
    Aboussaleh, Ilyasse
    Riffi, Jamal
    Fazazy, Khalid El
    Mahraz, Mohamed Adnane
    Tairi, Hamid
    DIAGNOSTICS, 2023, 13 (05)
  • [42] DARU-Net: A dual attention residual U-Net for uterine fibroids segmentation on MRI
    Zhang, Jian
    Liu, Yang
    Chen, Liping
    Ma, Si
    Zhong, Yuqing
    He, Zhimin
    Li, Chengwei
    Xiao, Zhibo
    Zheng, Yineng
    Lv, Fajin
    JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, 2023, 24 (06):
  • [43] Brain Tumor Segmentation from Optimal MRI Slices Using a Lightweight U-Net
    Hernandez-Gutierrez, Fernando Daniel
    Avina-Bravo, Eli Gabriel
    Zambrano-Gutierrez, Daniel F.
    Almanza-Conejo, Oscar
    Ibarra-Manzano, Mario Alberto
    Ruiz-Pinales, Jose
    Ovalle-Magallanes, Emmanuel
    Avina-Cervantes, Juan Gabriel
    TECHNOLOGIES, 2024, 12 (10)
  • [44] Brain tumor segmentation using U-Net in conjunction with EfficientNet
    Lin, Shu-You
    Lin, Chun-Ling
    PEERJ COMPUTER SCIENCE, 2024, 10
  • [45] An Attention-Based Residual U-Net for Tumour Segmentation Using Multi-Modal MRI Brain Images
    Naqvi, Najme Zehra
    Seeja, K. R.
    IEEE ACCESS, 2025, 13 : 10240 - 10251
  • [46] BRAIN TUMOR SEGMENTATION AND CLASSIFICATION USING OPTIMIZED U-NET
    Shiny, K. V.
    JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY, 2024, 24 (01)
  • [47] Brain tumor segmentation and classification using optimized U-Net
    Shiny, K., V
    IMAGING SCIENCE JOURNAL, 2024, 72 (02): : 204 - 219
  • [48] APU-Net: An Attention Mechanism Parallel U-Net for Lung Tumor Segmentation
    Zhou, Tao
    Dong, YaLi
    Lu, HuiLing
    Zheng, XiaoMin
    Qiu, Shi
    Hou, SenBao
    BIOMED RESEARCH INTERNATIONAL, 2022, 2022
  • [49] Hippocampus Segmentation in MRI Using Side U-Net Model
    Yao, Wenbin
    Wang, Shan
    Fu, Huiyuan
    NEURAL INFORMATION PROCESSING (ICONIP 2019), PT III, 2019, 11955 : 143 - 150
  • [50] Attention U-Net for Glaucoma Identification Using Fundus Image Segmentation
    Shyamalee, Thisara
    Meedeniya, Dulani
    2022 INTERNATIONAL CONFERENCE ON DECISION AID SCIENCES AND APPLICATIONS (DASA), 2022, : 6 - 10