Proxemics-based deep reinforcement learning for robot navigation in continuous action space

被引:1
|
作者
Cimurs R. [1 ]
Suh I.-H. [2 ]
机构
[1] Department of Intelligent Robot Engineering, Hanyang University
[2] Department of Electronics and Computer Engineering, Hanyang University
关键词
Deep reinforcement learning; Proxemics-based navigation; Socially aware navigation;
D O I
10.5302/J.ICROS.2020.19.0225
中图分类号
学科分类号
摘要
This paper presents a deep reinforcement learning approach to learn robot navigation in continuous action space with a motion behavior based on human proxemics. We extended a deep deterministic policy gradient network to include convolutional layers for dealing with motion over multiple timesteps. A proxemics-based cost function for the robot to obtain the desired socially aware navigation behavior was developed and implemented in the learning stage, which respects the personal and intimate space of a human. The performed experiments in the simulated and real environments exhibited the desired behavior. Furthermore, the intrusions into the proxemics zones of a human were significantly reduced compared to similar learned robot navigation approaches. © ICROS 2020.
引用
收藏
页码:168 / 176
页数:8
相关论文
共 50 条
  • [21] Quantum Deep Reinforcement Learning for Robot Navigation Tasks
    Hohenfeld, Hans
    Heimann, Dirk
    Wiebe, Felix
    Kirchner, Frank
    IEEE ACCESS, 2024, 12 : 87217 - 87236
  • [22] Mobile Robot Navigation Using Deep Reinforcement Learning
    Lee, Min-Fan Ricky
    Yusuf, Sharfiden Hassen
    PROCESSES, 2022, 10 (12)
  • [23] Unguided Robot Navigation Using Continuous Action Space
    Tangruamsub, Sirinart
    Tsuboyama, Manabu
    Kawewong, Aram
    Hasegawa, Osamu
    ARTIFICIAL NEURAL NETWORKS (ICANN 2010), PT III, 2010, 6354 : 528 - 534
  • [24] Rule-Based Reinforcement Learning for Efficient Robot Navigation With Space Reduction
    Zhu, Yuanyang
    Wang, Zhi
    Chen, Chunlin
    Dong, Daoyi
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2022, 27 (02) : 846 - 857
  • [25] A Behavior-Based Mobile Robot Navigation Method with Deep Reinforcement Learning
    Li, Juncheng
    Ran, Maopeng
    Wang, Han
    Xie, Lihua
    UNMANNED SYSTEMS, 2021, 9 (03) : 201 - 209
  • [26] CBNAV: Costmap Based Approach to Deep Reinforcement Learning Mobile Robot Navigation
    Tomasi Junior, Darci Luiz
    Todt, Eduardo
    2021 LATIN AMERICAN ROBOTICS SYMPOSIUM / 2021 BRAZILIAN SYMPOSIUM ON ROBOTICS / 2021 WORKSHOP OF ROBOTICS IN EDUCATION (LARS-SBR-WRE 2021), 2021, : 324 - 329
  • [27] Autonomous Navigation by Mobile Robot with Sensor Fusion Based on Deep Reinforcement Learning
    Ou, Yang
    Cai, Yiyi
    Sun, Youming
    Qin, Tuanfa
    SENSORS, 2024, 24 (12)
  • [28] Sensor-based Mobile Robot Navigation via Deep Reinforcement Learning
    Han, Seungho-Ho
    Choi, Ho-Jin
    Benz, Philipp
    Loaiciga, Jorge
    2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (BIGCOMP), 2018, : 147 - 154
  • [29] Robot Navigation in Crowd Based on Dual Social Attention Deep Reinforcement Learning
    Zeng, Hui
    Hu, Rong
    Huang, Xiaohui
    Peng, Zhiying
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021 (2021)
  • [30] Obstacle Avoidance for UAS in Continuous Action Space Using Deep Reinforcement Learning
    Hu, Jueming
    Yang, Xuxi
    Wang, Weichang
    Wei, Peng
    Ying, Lei
    Liu, Yongming
    IEEE ACCESS, 2022, 10 : 90623 - 90634