共 22 条
- [11] Mahadevan S, Athar A, Osep A, Et al., Making a case for 3d convolutions for object segmentation in videos, (2020)
- [12] SCHMIDT C, ATHAR A, MAHADEVAN S, Et al., D2conv3d: Dynamic dilated convolutions for object segmentation in videos, 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 1200-1209, (2022)
- [13] RANFTL R, LASINGER K, HAFNER D, Et al., Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer, IEEE Transactions on Pattern Analysis and Machine Intelligence, 44, 3, pp. 1623-1637, (2020)
- [14] TEED Z, DENG J., RAFT: Recurrent all-pairs field transforms for optical flow, Computer Vision - ECCV 2020, pp. 402-419, (2020)
- [15] PERAZZI F, PONT-TUSET J, MCWILLIAMS B, Et al., A benchmark dataset and evaluation methodology for video object segmentation, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 724-732, (2016)
- [16] OCHS P, MALIK J, BROX T., Segmentation of moving objects by long term video analysis[J], IEEE Transactions on Pattern Analysis and Machine Intelligence, 36, 6, pp. 1187-1200, (2013)
- [17] XU N, YANG L J, FAN Y C, Et al., Youtube-vos: Sequence-to-sequence video object segmentation [C], Computer Vision - ECCV 2018, pp. 585-601, (2018)
- [18] FAN D P, WANG W G, CHENG M M, Et al., Shifting more attention to video salient object detection, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8554-8564, (2019)
- [19] WANG W G, SHEN J B, SHAO L., Consistent video saliency using local gradient flow optimization and global refinement, IEEE Transactions on Image Processing, 24, 11, pp. 4185-4196, (2015)
- [20] CHEN Y W, JIN X J, SHEN X H, Et al., Video salient object detection via contrastive features and attention modules, 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 1320-1329, (2022)