NONPARAMETRIC INFERENCE FOR THE REPRODUCTIVE RATE IN GENERALIZED COMPARTMENTAL MODELS*

被引:0
|
作者
Trejo, Imelda [1 ]
Lin, Yen Ting [2 ]
Patrick, Amanda [3 ]
Hengartner, Nicolas [1 ,4 ]
机构
[1] Theoretical Biology and Biophysics Group (T-6), Theoretical Division, Los Alamos National Laboratory, Los Alamos,NM,87545, United States
[2] Information Sciences Group (CCS-3), Computer, Computational and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos,NM,87545, United States
[3] Department of Mathematics, The University of Texas at Arlington, Arlington,TX,76019, United States
[4] Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos,NM,87545, United States
关键词
COVID-19;
D O I
10.1137/22M1505499
中图分类号
学科分类号
摘要
We develop a tractable nonparametric model for the time-varying reproductive rate of infectious diseases that combines the structure of a deterministic compartmental model and a stochastic model for incidence data. We use Bayesian inference to estimate, with uncertainty, the reproductive rate of the Coronavirus 2019 outbreak in the U.S. states of California, Florida, Michigan, New Mexico, New York, and Texas from January 2020 to March 2022. Employing the inferred reproductive rates, we estimate the posterior distribution of the time-varying reproduction numbers for each state. Compering the time-varying reproduction numbers across the states, we identify some epidemic waves, potentially driven from changes in human behavior and virus mutations. © 2024 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license.
引用
收藏
相关论文
共 50 条
  • [41] HIDDEN OSCILLATIONS IN GENERALIZED LINEAR MAMMILLARY COMPARTMENTAL-MODELS
    FAGARASAN, JT
    DISTEFANO, JJ
    [J]. MATHEMATICAL BIOSCIENCES, 1989, 93 (01) : 79 - 95
  • [42] Discussion of 'Nonparametric generalized fiducial inference for survival functions under censoring'
    Martin, Ryan
    [J]. BIOMETRIKA, 2019, 106 (03) : 519 - 522
  • [43] Rejoinder: 'Nonparametric generalized fiducial inference for survival functions under censoring'
    Cui, Y.
    Hannig, J.
    [J]. BIOMETRIKA, 2019, 106 (03) : 527 - 531
  • [44] GENERALIZED STOCHASTIC COMPARTMENTAL-MODELS WITH ERLANG TRANSIT TIMES
    MATIS, JH
    WEHRLY, TE
    [J]. JOURNAL OF PHARMACOKINETICS AND BIOPHARMACEUTICS, 1990, 18 (06): : 589 - 607
  • [45] Inference in nonparametric/semiparametric moment equality models with shape restrictions
    Zhu, Yu
    [J]. QUANTITATIVE ECONOMICS, 2020, 11 (02) : 609 - 636
  • [46] Bayesian inference in nonparametric dynamic state-space models
    Ghosh, Anurag
    Mukhopadhyay, Soumalya
    Roy, Sandipan
    Bhattacharya, Sourabh
    [J]. STATISTICAL METHODOLOGY, 2014, 21 : 35 - 48
  • [47] npcure: An R Package for Nonparametric Inference in Mixture Cure Models
    Lopez-Cheda, Ana
    Jacome, M. Amalia
    Lopez-de-Ullibarri, Ignacio
    [J]. R JOURNAL, 2021, 13 (01): : 21 - 41
  • [48] Inference by the m out of n bootstrap in nonparametric frontier models
    Léopold Simar
    Paul W. Wilson
    [J]. Journal of Productivity Analysis, 2011, 36 : 33 - 53
  • [49] Estimation and Inference in Nonparametric Frontier Models: Recent Developments and Perspectives
    Martins-Filho, Carlos
    [J]. JOURNAL OF ECONOMIC LITERATURE, 2014, 52 (01) : 218 - 220
  • [50] High-dimensional Bayesian inference in nonparametric additive models
    Shang, Zuofeng
    Li, Ping
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2014, 8 : 2804 - 2847