Malicious url detection using machine learning and ensemble modeling

被引:0
|
作者
Pakhare P.S. [1 ]
Krishnan S. [1 ]
Charniya N.N. [1 ]
机构
[1] V.E.S Institute of Technology, Mumbai
来源
Lecture Notes on Data Engineering and Communications Technologies | 2021年 / 66卷
关键词
Cyberattacks; Ensemble models; Machine learning; Malicious URLs; Supervised learning;
D O I
10.1007/978-981-16-0965-7_65
中图分类号
学科分类号
摘要
Websites are software applications that allow us to connect and interact with the data located in the web servers. Websites allow the user to capture, store, process, and exchange sensitive data like banking details and personal details. Web pages are accessed by merely entering the required URL in the browser. To prevent sensitive information from users, the attackers/hackers make duplicate websites and send them to victims through phishing emails. In this article, the machine learning framework is used to find malicious URLs. Here, five different machine learning algorithms such as the logistic regression algorithm, K-nearest neighbor algorithm, decision tree algorithm, random forest algorithm, and support vector machine algorithm have been used. An ensemble modeling has been done using these algorithms, and the performance of each algorithm has been compared. © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021.
引用
收藏
页码:839 / 850
页数:11
相关论文
共 50 条
  • [11] An ensemble classification method based on machine learning models for malicious Uniform Resource Locators (URL)
    Sankaranarayanan, Suresh
    Sivachandran, Arvinthan Thevar
    Khairuddin, Anis Salwa Mohd
    Hasikin, Khairunnisa
    Sait, Abdul Rahman Wahab
    PLOS ONE, 2024, 19 (05):
  • [12] Learning URL Embedding for Malicious Website Detection
    Yan, Xiaodan
    Xu, Yang
    Cui, Baojiang
    Zhang, Shuhan
    Guo, Taibiao
    Li, Chaoliang
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2020, 16 (10) : 6673 - 6681
  • [13] A Heterogeneous Machine Learning Ensemble Framework for Malicious Webpage Detection
    Shin, Sam-Shin
    Ji, Seung-Goo
    Hong, Sung-Sam
    APPLIED SCIENCES-BASEL, 2022, 12 (23):
  • [14] Detection of Malicious URLs through an Ensemble of Machine Learning Techniques
    Venugopal, Shreya
    Panale, Shreya Yuvraj
    Agarwal, Manav
    Kashyap, Rishab
    Ananthanagu, U.
    2021 IEEE ASIA-PACIFIC CONFERENCE ON COMPUTER SCIENCE AND DATA ENGINEERING (CSDE), 2021,
  • [15] Malicious URL Detection using Logistic Regression
    Chiramdasu, Rupa
    Srivastava, Gautam
    Bhattacharya, Sweta
    Reddy, Praveen Kumar
    Gadekallu, Thippa Reddy
    2021 IEEE INTERNATIONAL CONFERENCE ON OMNI-LAYER INTELLIGENT SYSTEMS (IEEE COINS 2021), 2021, : 33 - 38
  • [16] Phishing URL Detection Using Machine Learning and Deep Learning
    Ferdaws, Rawshon
    Majd, Nahid Ebrahimi
    2024 IEEE 5TH ANNUAL WORLD AI IOT CONGRESS, AIIOT 2024, 2024, : 0485 - 0490
  • [17] Phishing URL detection using machine learning methods
    Ahammad, S. K. Hasane
    Kale, Sunil D.
    Upadhye, Gopal D.
    Pande, Sandeep Dwarkanath
    Babu, E. Venkatesh
    Dhumane, Amol, V
    Bahadur, Dilip Kumar Jang
    ADVANCES IN ENGINEERING SOFTWARE, 2022, 173
  • [18] Detection of malicious URLs using machine learning
    Reyes-Dorta, Nuria
    Caballero-Gil, Pino
    Rosa-Remedios, Carlos
    WIRELESS NETWORKS, 2024, 30 (09) : 7543 - 7560
  • [19] Adaptive Malicious URL Detection: Learning in the Presence of Concept Drifts
    Tan, Guolin
    Zhang, Peng
    Liu, Qingyun
    Liu, Xinran
    Zhu, Chunge
    Dou, Fenghu
    2018 17TH IEEE INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS (IEEE TRUSTCOM) / 12TH IEEE INTERNATIONAL CONFERENCE ON BIG DATA SCIENCE AND ENGINEERING (IEEE BIGDATASE), 2018, : 737 - 743
  • [20] Detection of Malicious Domains With Concept Drift Using Ensemble Learning
    Chiang, Pin-Hsuan
    Tsai, Shi-Chun
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2024, 21 (06): : 6796 - 6809