Strategy to improve the accuracy of convolutional neural network architectures applied to digital image steganalysis in the spatial domain

被引:0
|
作者
Tabares-Soto R. [1 ]
Arteaga-Arteaga H.B. [1 ]
Mora-Rubio A. [1 ]
Bravo-Ortíz M.A. [1 ]
Arias-Garzón D. [1 ]
Grisales J.A.A. [1 ]
Jacome A.B. [1 ]
Orozco-Arias S. [2 ,3 ]
Isaza G. [3 ]
Pollan R.R. [4 ]
机构
[1] Department of Electronics and Automation, Universidad Autónoma de Manizales, Manizales, Caldas
[2] Department of Computer Science, Universidad Autónoma de Manizales, Manizales, Caldas
[3] Department of Systems and Informatics, Universidad de Caldas, Manizales, Caldas
[4] Department of Systems Engineering, Universidad de Antioquia, Medellín, Antioquia
来源
Tabares-Soto, Reinel (rtabares@autonoma.edu.co) | 1600年 / PeerJ Inc.卷 / 07期
关键词
Convolutional neural network; Deep learning; Steganalysis; Strategy;
D O I
10.7717/PEERJ-CS.451
中图分类号
学科分类号
摘要
In recent years, Deep Learning techniques applied to steganalysis have surpassed the traditional two-stage approach by unifying feature extraction and classification in a single model, the Convolutional Neural Network (CNN). Several CNN architectures have been proposed to solve this task, improving steganographic images’ detection accuracy, but it is unclear which computational elements are relevant. Here we present a strategy to improve accuracy, convergence, and stability during training. The strategy involves a preprocessing stage with Spatial Rich Models filters, Spatial Dropout, Absolute Value layer, and Batch Normalization. Using the strategy improves the performance of three steganalysis CNNs and two image classification CNNs by enhancing the accuracy from 2% up to 10% while reducing the training time to less than 6 h and improving the networks’ stability. Copyright 2021 Tabares-Soto et al.
引用
收藏
页码:1 / 21
页数:20
相关论文
共 50 条
  • [41] A Preliminary Study of Convolutional Neural Network Architectures for Breast Cancer Image Classification
    Khairi, Siti Shaliza Mohd
    Abu Bakar, Mohd Aftar
    Alias, Mohd Almie
    Abu Bakar, Sakhinah
    Liong, Choong-Yeun
    2021 IEEE ASIA-PACIFIC CONFERENCE ON COMPUTER SCIENCE AND DATA ENGINEERING (CSDE), 2021,
  • [42] Bird Image Classification using Convolutional Neural Network Transfer Learning Architectures
    Manna, Asmita
    Upasani, Nilam
    Jadhav, Shubham
    Mane, Ruturaj
    Chaudhari, Rutuja
    Chatre, Vishal
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (03) : 854 - 864
  • [43] Gesture recognition of graph convolutional neural network based on spatial domain
    Chen, Hong
    Zhao, Hongdong
    Qi, Baoqiang
    Zhang, Shuai
    Yu, Zhanghong
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (03): : 2157 - 2167
  • [44] Gesture recognition of graph convolutional neural network based on spatial domain
    Hong Chen
    Hongdong Zhao
    Baoqiang Qi
    Shuai Zhang
    Zhanghong Yu
    Neural Computing and Applications, 2023, 35 : 2157 - 2167
  • [45] Medical image fusion with convolutional neural network in multiscale transform domain
    Abas, Asan Ihsan
    Kocer, Hasan Erdinc
    Baykan, Nurdan Akhan
    TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2021, 29 : 2780 - +
  • [46] Image classification using convolutional neural network with wavelet domain inputs
    Wang, Luyuan
    Sun, Yankui
    IET IMAGE PROCESSING, 2022, 16 (08) : 2037 - 2048
  • [47] IAS-CNN: Image adaptive steganalysis via convolutional neural network combined with selection channel
    Jin, Zhujun
    Yang, Yu
    Chen, Yuling
    Chen, Yuwei
    INTERNATIONAL JOURNAL OF DISTRIBUTED SENSOR NETWORKS, 2020, 16 (03):
  • [48] Enhancement of digital radiography image quality using a convolutional neural network
    Sun, Yuewen
    Li, Litao
    Cong, Peng
    Wang, Zhentao
    Guo, Xiaojing
    JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY, 2017, 25 (06) : 857 - 868
  • [49] Digital image fuzzy enhancement algorithm based on convolutional neural network
    Guo Z.-J.
    Liu S.
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2022, 52 (10): : 2399 - 2404
  • [50] Hyperspectral image super-resolution using recursive densely convolutional neural network with spatial constraint strategy
    Jianwei Zhao
    Taoye Huang
    Zhenghua Zhou
    Neural Computing and Applications, 2020, 32 : 14471 - 14481