Strategy to improve the accuracy of convolutional neural network architectures applied to digital image steganalysis in the spatial domain

被引:0
|
作者
Tabares-Soto R. [1 ]
Arteaga-Arteaga H.B. [1 ]
Mora-Rubio A. [1 ]
Bravo-Ortíz M.A. [1 ]
Arias-Garzón D. [1 ]
Grisales J.A.A. [1 ]
Jacome A.B. [1 ]
Orozco-Arias S. [2 ,3 ]
Isaza G. [3 ]
Pollan R.R. [4 ]
机构
[1] Department of Electronics and Automation, Universidad Autónoma de Manizales, Manizales, Caldas
[2] Department of Computer Science, Universidad Autónoma de Manizales, Manizales, Caldas
[3] Department of Systems and Informatics, Universidad de Caldas, Manizales, Caldas
[4] Department of Systems Engineering, Universidad de Antioquia, Medellín, Antioquia
来源
Tabares-Soto, Reinel (rtabares@autonoma.edu.co) | 1600年 / PeerJ Inc.卷 / 07期
关键词
Convolutional neural network; Deep learning; Steganalysis; Strategy;
D O I
10.7717/PEERJ-CS.451
中图分类号
学科分类号
摘要
In recent years, Deep Learning techniques applied to steganalysis have surpassed the traditional two-stage approach by unifying feature extraction and classification in a single model, the Convolutional Neural Network (CNN). Several CNN architectures have been proposed to solve this task, improving steganographic images’ detection accuracy, but it is unclear which computational elements are relevant. Here we present a strategy to improve accuracy, convergence, and stability during training. The strategy involves a preprocessing stage with Spatial Rich Models filters, Spatial Dropout, Absolute Value layer, and Batch Normalization. Using the strategy improves the performance of three steganalysis CNNs and two image classification CNNs by enhancing the accuracy from 2% up to 10% while reducing the training time to less than 6 h and improving the networks’ stability. Copyright 2021 Tabares-Soto et al.
引用
收藏
页码:1 / 21
页数:20
相关论文
共 50 条
  • [1] Strategy to improve the accuracy of convolutional neural network architectures applied to digital image steganalysis in the spatial domain
    Tabares-Soto, Reinel
    Brayan Arteaga-Arteaga, Harold
    Mora-Rubio, Alejandro
    Alejandro Bravo-Ortiz, Mario
    Arias-Garzon, Daniel
    Alzate Grisales, Jesus Alejandro
    Burbano Jacome, Alejandro
    Orozco-Arias, Simon
    Isaza, Gustavo
    Ramos Pollan, Raul
    PEERJ COMPUTER SCIENCE, 2021,
  • [2] Preprocessing Strategy to Improve the Performance of Convolutional Neural Networks Applied to Steganalysis in the Spatial Domain
    Alejandro Bravo-Ortiz, Mario
    Mercado-Ruiz, Esteban
    Villa-Pulgarin, Juan Pablo
    Arteaga-Arteaga, Harold Brayan
    Isaza, Gustavo
    Ramos-Pollan, Raul
    Tamayo-Monsalve, Manuel Alejandro
    Tabares-Soto, Reinel
    JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, 2024, 15 (01) : 33 - 39
  • [3] Dual Convolutional Neural Network for Image Steganalysis
    Kim, Jaeyoung
    Kang, Sanghoon
    Park, Hanhoon
    Park, Jong-Il
    2019 IEEE INTERNATIONAL SYMPOSIUM ON BROADBAND MULTIMEDIA SYSTEMS AND BROADCASTING (BMSB), 2019,
  • [4] GBRAS-Net: A Convolutional Neural Network Architecture for Spatial Image Steganalysis
    Reinel, Tabares-Soto
    Brayan, Arteaga-Arteaga Harold
    Alejandro, Bravo-Ortiz Mario
    Alejandro, Mora-Rubio
    Daniel, Arias-Garzon
    Alejandro, Alzate-Grisales Jesus
    Buenaventura, Burbano-Jacome Alejandro
    Simon, Orozco-Arias
    Gustavo, Isaza
    Raul, Ramos-Pollan
    IEEE ACCESS, 2021, 9 : 14340 - 14350
  • [5] A New Convolutional Neural Network-Based Steganalysis Method for Content-Adaptive Image Steganography in the Spatial Domain
    Xiang, Zhili
    Sang, Jun
    Zhang, Qian
    Cai, Bin
    Xia, Xiaofeng
    Wu, Weiqun
    IEEE ACCESS, 2020, 8 : 47013 - 47020
  • [6] A New Convolutional Neural Network-Based Steganalysis Method for Content-Adaptive Image Steganography in the Spatial Domain
    Xiang, Zhili
    Sang, Jun
    Zhang, Qian
    Cai, Bin
    Xia, Xiaofeng
    Wu, Weiqun
    IEEE Access, 2020, 8 : 47013 - 47020
  • [7] A Dilated Convolutional Neural Network as Feature Selector for Spatial Image Steganalysis - A Hybrid Classification Scheme
    Karampidis, K.
    Kavallieratou, E.
    Papadourakis, G.
    PATTERN RECOGNITION AND IMAGE ANALYSIS, 2020, 30 (03) : 342 - 358
  • [8] A Dilated Convolutional Neural Network as Feature Selector for Spatial Image Steganalysis – A Hybrid Classification Scheme
    K. Karampidis
    E. Kavallieratou
    G. Papadourakis
    Pattern Recognition and Image Analysis, 2020, 30 : 342 - 358
  • [9] Image steganalysis based on convolutional neural network and feature selection
    Sun, Zhanquan
    Lie, Feng
    Huang, Huifen
    Wang, Jian
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2020, 32 (05):
  • [10] A Novel Convolutional Neural Network for Image Steganalysis With Shared Normalization
    Wu, Songtao
    Zhong, Sheng-hua
    Liu, Yan
    IEEE TRANSACTIONS ON MULTIMEDIA, 2020, 22 (01) : 256 - 270