Towards Deep Learning Augmented Robust D-Band Millimeter-Wave Picocell Deployment

被引:0
|
作者
Regmi H. [1 ]
Sur S. [1 ]
机构
[1] Computer Science and Engineering, University of South Carolina, Columbia
来源
Performance Evaluation Review | 2023年 / 50卷 / 04期
关键词
5G mobile communication systems - Deep learning;
D O I
10.1145/3595244.3595266
中图分类号
学科分类号
摘要
D-band millimeter-wave, a key wireless technology for beyond 5G networks, promises extremely high data rate, ultra-low latency, and enables new Internet of Things applications. However, massive signal attenuation, complex response to building structures, and frequent non-availability of the Line-Of-Sight path make D-band picocell deployment challenging. To address this challenge, we propose a deep learning-based tool, that allows a network deployer to quickly scan the environment from a few random locations and predict Signal Reflection Profiles everywhere, which is essential to determine the optimal locations for picocell deployment. © 2023 Copyright is held by the owner/author(s).
引用
收藏
页码:62 / 64
页数:2
相关论文
共 50 条
  • [31] A Deep Learning Approach for Microwave and Millimeter-Wave Radiometer Calibration
    Ogut, Mehmet
    Bosch-Lluis, Xavier
    Reising, Steven C.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (08): : 5344 - 5355
  • [32] DEEP LEARNING BEAM OPTIMIZATION IN MILLIMETER-WAVE COMMUNICATION SYSTEMS
    Ismayilov, Rafail
    Cavalcante, Renato L. G.
    Stanczak, Slawomir
    2021 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2021, : 581 - 585
  • [33] Novel D-Band Si-Based Integrated Platform for Millimeter Wave
    Basha, M. A.
    Samir, A.
    Naeini, S. Safavi
    Biglarbegian, B.
    Gigoyan, S.
    2014 44TH EUROPEAN MICROWAVE CONFERENCE (EUMC), 2014, : 1068 - 1071
  • [34] D-Band double dipole antenna for use in millimeter wave imaging systems
    Shen, Z.
    Ito, N.
    Sakata, E.
    Domier, C. W.
    Luhmann, N. C., Jr.
    Mase, A.
    2007 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM, VOLS 1-12, 2007, : 2433 - +
  • [35] Towards Robust Human Millimeter Wave Imaging Inspection System in Real Time with Deep Learning
    Liu, Chenyu
    Yang, Minghui
    Sun, Xiaowei
    PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER, 2018, 161 : 87 - 100
  • [36] Machine Learning for Robust Beam Tracking in Mobile Millimeter-Wave Systems
    Sarkar, Sopan
    Krunz, Marwan
    Aykin, Irmak
    Manzi, David
    2021 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2021,
  • [37] Stochastic Learning Robust Beamforming for Millimeter-Wave Systems With Path Blockage
    Iimori, Hiroki
    de Abreu, Giuseppe Thadeu Freitas
    Taghizadeh, Omid
    Stoica, Razvan-Andrei
    Hara, Takanori
    Ishibashi, Koji
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2020, 9 (09) : 1557 - 1561
  • [38] Deep learning for fast channel estimation in millimeter-wave MIMO systems
    LYU Siting
    LI Xiaohui
    FAN Tao
    LIU Jiawen
    SHI Mingli
    JournalofSystemsEngineeringandElectronics, 2022, 33 (06) : 1088 - 1095
  • [39] Deep learning for fast channel estimation in millimeter-wave MIMO systems
    Lyu, Siting
    Li, Xiaohui
    Fan, Tao
    Liu, Jiawen
    Shi, Mingli
    JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2022, 33 (06) : 1088 - 1095
  • [40] Deep Learning based Fast and Accurate Beamforming for Millimeter-Wave Systems
    Cousik, Tarun S.
    Shah, Vijay K.
    Reed, Jeffrey H.
    Tran, Harry X.
    Jana, Rittwik
    MILCOM 2023 - 2023 IEEE MILITARY COMMUNICATIONS CONFERENCE, 2023,