Earth data assimilation in hydrologic models: recent advances

被引:2
|
作者
Jeyalakshmi S. [1 ]
Chilkoti V. [1 ]
Bolisetti T. [1 ]
Balachandar R. [1 ]
机构
[1] Department of Civil and Environmental Engineering, University of Windsor, Windsor
基金
加拿大自然科学与工程研究理事会;
关键词
climate change; data assimilation; Hydrologic modelling; remote sensing data;
D O I
10.1080/00207233.2021.1875303
中图分类号
学科分类号
摘要
Hydrologic model forecasts have inherent uncertainties from input errors, lack of physical representation, and parameter equifinality. Accurate modelling results with reduced uncertainty are necessary for water resources management and decision-making, especially in a changing climate scenario. To this end, the hydrologic modelling community widely accepts the assimilation of satellite remote sensing data. This paper reviews the recent developments in hydrologic data assimilation (DA) focusing on progress in the role of satellite remote sensing data in reducing model uncertainty. © 2021 Informa UK Limited, trading as Taylor & Francis Group.
引用
收藏
页码:1003 / 1021
页数:18
相关论文
共 50 条
  • [21] Understanding the Earth as a Complex System – recent advances in data analysis and modelling in Earth sciences
    R. Donner
    S. Barbosa
    J. Kurths
    N. Marwan
    The European Physical Journal Special Topics, 2009, 174 : 1 - 9
  • [22] Dynamic Calibration in Hydrologic and Hydraulic Modelling: Exploring the Potential of Data Assimilation for Estimation of Models' Parameters
    Milos, Milasinovic
    Andrijana, Todorovic
    Budo, Zindovic
    ADVANCES IN HYDROINFORMATICS, VOL 2, SIMHYDRO 2023, 2024, : 163 - 172
  • [23] The importance of parameter resampling for soil moisture data assimilation into hydrologic models using the particle filter
    Plaza, D. A.
    De Keyser, R.
    De Lannoy, G. J. M.
    Giustarini, L.
    Matgen, P.
    Pauwels, V. R. N.
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2012, 16 (02) : 375 - 390
  • [24] Hydrologic remote sensing and land surface data assimilation
    Moradkhani, Hamid
    SENSORS, 2008, 8 (05) : 2986 - 3004
  • [25] Hydrologic modeling in dynamic catchments: A data assimilation approach
    Pathiraja, S.
    Marshall, L.
    Sharma, A.
    Moradkhani, H.
    WATER RESOURCES RESEARCH, 2016, 52 (05) : 3350 - 3372
  • [26] Correcting Unintended Perturbation Biases in Hydrologic Data Assimilation
    Ryu, Dongryeol
    Crow, Wade T.
    Zhan, Xiwu
    Jackson, Thomas J.
    JOURNAL OF HYDROMETEOROLOGY, 2009, 10 (03) : 734 - 750
  • [27] Data-Driven Model Uncertainty Estimation in Hydrologic Data Assimilation
    Pathiraja, S.
    Moradkhani, H.
    Marshall, L.
    Sharma, A.
    Geenens, G.
    WATER RESOURCES RESEARCH, 2018, 54 (02) : 1252 - 1280
  • [28] Editorial for the Special Issue "Assimilation of Remote Sensing Data into Earth System Models"
    Calvet, Jean-Christophe
    de Rosnay, Patricia
    Penny, Stephen G.
    REMOTE SENSING, 2019, 11 (18)
  • [29] Learning earth system models from observations: machine learning or data assimilation?
    Geer, A. J.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2021, 379 (2194):
  • [30] The Regional Hydrologic Extremes Assessment System: A software framework for hydrologic modeling and data assimilation
    Andreadis, Konstantinos M.
    Das, Narendra
    Stampoulis, Dimitrios
    Ines, Amor
    Fisher, Joshua B.
    Granger, Stephanie
    Kawata, Jessie
    Han, Eunjin
    Behrangi, Ali
    PLOS ONE, 2017, 12 (05):