Plasma induced grain boundaries to boost electrochemical reduction of CO2 to formate

被引:0
|
作者
Wang, Guan [1 ]
Zhong, Shengtao [1 ]
Xiong, Xiaoqian [1 ]
Li, Jing [1 ]
Wang, Fangyuan [1 ]
Huo, Li [1 ]
Wu, Daoxiong [1 ]
Han, Xingqi [1 ]
Wang, Zhitong [1 ]
Chen, Qi [1 ]
Tian, Xinlong [1 ]
Deng, Peilin [1 ]
机构
[1] Hainan Univ, Sch Marine Sci & Engn, State Key Lab Marine Resource Utilizat South China, Haikou 570228, Hainan, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
CO; 2; electroreduction; Bi nanosheet; Grain boundary; Unsaturation Bi atoms; MEA device; TOTAL-ENERGY CALCULATIONS; SALT-TEMPLATED SYNTHESIS; BISMUTH; ELECTROREDUCTION; NANOSHEETS;
D O I
10.1016/j.jechem.2024.04.026
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Bismuth-based catalysts are highly promising for the electrochemical carbon dioxide reduction reaction (eCO(2)RR) to formate product. However, achieving high activity and selectivity towards formate and ensuring long-term stability remains challenging. This work reports the oxygen plasma inducing strategy to construct the abundant grain boundaries of Bi/BiOx on ultrathin two-dimensional Bi nanosheets. The oxygen plasma-treated Bi nanosheet (OP-Bi) exhibits over 90% Faradaic efficiency (FE) for formate at a wide potential range from -0.5 to -1.1 V, and maintains a great stability catalytic performance without significant decay over 30 h in flow cell. Moreover, membrane electrode assembly (MEA) device with OP-Bi as catalyst sustains the robust current density of 100 mA cm(-2) over 50 h, maintaining a formate FE above 90%. In addition, rechargeable Zn-CO2 battery presents the peak power density of 1.22 mW cm(-2) with OP-Bi as bifunctional catalyst. The mechanism experiments demonstrate that the high-density grain boundaries of OP-Bi provide more exposed active sites, faster electron transfer capacity, and the stronger intrinsic activity of Bi atoms. In situ spectroscopy and theoretical calculations further elucidate that the unsaturated Bi coordination atoms between the grain boundaries can effectively activate CO2 molecules through elongating the C-O bond, and reducing the formation energy barrier of the key intermediate (*OCOH), thereby enhancing the catalytic performance of eCO(2)RR to formate product.
引用
收藏
页码:636 / 643
页数:8
相关论文
共 50 条
  • [21] Production of formate by CO2 electrochemical reduction and its application in energy storage
    Xiang, Hang
    Miller, Hamish Andrew
    Bellini, Marco
    Christensen, Henriette
    Scott, Keith
    Rasul, Shahid
    Yu, Eileen H.
    SUSTAINABLE ENERGY & FUELS, 2020, 4 (01): : 277 - 284
  • [22] Recent progress in electrochemical reduction of CO2 into formate and C2 compounds
    Wei Jyun Wang
    Louis Scudiero
    Su Ha
    Korean Journal of Chemical Engineering, 2022, 39 : 461 - 474
  • [23] Recent progress in electrochemical reduction of CO2 into formate and C2 compounds
    Wang, Wei Jyun
    Scudiero, Louis
    Ha, Su
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2022, 39 (03) : 461 - 474
  • [24] Ce Promotion of In2O3 for Electrochemical Reduction of CO2 to Formate
    Wissink, Tim
    Rollier, Floriane A.
    Muravev, Valery
    Heinrichs, Jason M. J. J.
    van de Poll, Rim C. J.
    Zhu, Jiadong
    Anastasiadou, Dimitra
    Kosinov, Nikolay
    Figueiredo, Marta C.
    Hensen, Emiel J. M.
    ACS CATALYSIS, 2024, 14 (22): : 16589 - 16604
  • [25] Molecular catalysts for the reduction of CO2 to CO or formate
    Appel, Aaron M.
    Linehan, John C.
    Boro, Brian J.
    Galan, Brandon R.
    Jeletic, Matthew S.
    Peterson, Sonja M.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 246
  • [26] Regulation of Bimetallic Coordination Centers in MOF Catalyst for Electrochemical CO2 Reduction to Formate
    Yang, Rui
    Huang, Qun
    Sha, Xuelan
    Gao, Beibei
    Peng, Juan
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (18)
  • [27] Copper Gold Interactions Enhancing Formate Production from Electrochemical CO2 Reduction
    Tao, Zixu
    Wu, Zishan
    Yuan, Xiaolei
    Wu, Yueshen
    Wang, Hailiang
    ACS CATALYSIS, 2019, 9 (12) : 10894 - 10898
  • [28] Bismuth nanosheets with rich grain boundaries for efficient electroreduction of CO2 to formate under high pressures
    Ruan, Sunhong
    Zhang, Biao
    Zou, Jinhan
    Zhong, Wanfu
    He, Xiaoyang
    Lu, Jinhai
    Zhang, Qinghong
    Wang, Ye
    Xie, Shunji
    CHINESE JOURNAL OF CATALYSIS, 2022, 43 (12) : 3161 - 3169
  • [29] On the stability of electrochemical CO2 reduction reaction to formate at indium electrodes at biocompatible conditions
    Izadi, Paniz
    Kas, Aykut
    Haus, Philip
    Harnisch, Falk
    ELECTROCHIMICA ACTA, 2023, 462
  • [30] Electrochemical reduction of CO2 into formate/formic acid: A review of cell design and operation
    Ewis, Dina
    Arsalan, Muhammad
    Khaled, Mazen
    Pant, Deepak
    Ba-Abbad, Muneer M.
    Amhamed, Abdulkarem
    El-Naas, Muftah H.
    SEPARATION AND PURIFICATION TECHNOLOGY, 2023, 316