Bilateral transformer 3D planar recovery

被引:0
|
作者
Ren, Fei [2 ]
Liao, Chunhua [1 ]
Xie, Zhina [1 ]
机构
[1] Jiangmen Cent Hosp, Jiangmen 550025, Guangdong, Peoples R China
[2] Chinasoft Int Ltd, Shenzhen 518129, Peoples R China
关键词
Deep learning; 3D planar recovery; Planar segmentation; Bilateral networks;
D O I
10.1016/j.gmod.2024.101221
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In recent years, deep learning based methods for single image 3D planar recovery have made significant progress, but most of the research has focused on overall plane segmentation performance rather than the accuracy of small scale plane segmentation. In order to solve the problem of feature loss in the feature extraction process of small target object features, a three dimensional planar recovery method based on bilateral transformer was proposed. The two sided network branches capture rich small object target features through different scale sampling, and are used for detecting planar and non-planar regions respectively. In addition, the loss of variational information is used to share the parameters of the bilateral network, which achieves the output consistency of the bilateral network and alleviates the problem of feature loss of small target objects. The method is verified on Scannet and Nyu V2 datasets, and a variety of evaluation indexes are superior to the current popular algorithms, proving the effectiveness of the method in three dimensional planar recovery.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] 3D Planar RGB-D SLAM System
    ElGhor, Hakim ElChaoui
    Roussel, David
    Ababsa, Fakhreddine
    Bouyakhf, El-Houssine
    ADVANCED CONCEPTS FOR INTELLIGENT VISION SYSTEMS, ACIVS 2016, 2016, 10016 : 486 - 497
  • [22] PlanePDM: Boundary-aware 3D planar recovery by using parallel dilated mask head
    Ouyang, Wenzhe
    Xu, Zenglin
    Zhu, Qianying
    Shen, Bin
    Xu, Yong
    PATTERN RECOGNITION, 2025, 161
  • [23] Stratified Transformer for 3D Point Cloud Segmentation
    Lai, Xin
    Liu, Jianhui
    Jiang, Li
    Wang, Liwei
    Zhao, Hengshuang
    Liu, Shu
    Qi, Xiaojuan
    Jia, Jiaya
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 8490 - 8499
  • [24] Transient states analysis of 3D transformer structure
    Komeza, K
    Welfle, H
    Wiak, S
    COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 1998, 17 (1-3) : 252 - 256
  • [25] Dynamic graph transformer for 3D object detection
    Ren, Siyuan
    Pan, Xiao
    Zhao, Wenjie
    Nie, Binling
    Han, Bo
    KNOWLEDGE-BASED SYSTEMS, 2023, 259
  • [26] Superpoint Transformer for 3D Scene Instance Segmentation
    Sun, Jiahao
    Qing, Chunmei
    Tan, Junpeng
    Xu, Xiangmin
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 2, 2023, : 2393 - 2401
  • [27] Residual Transformer Network for 3D Objects Classification
    Meng, Shan
    Liang, Daoyuan
    Li, Yumei
    IWCMC 2021: 2021 17TH INTERNATIONAL WIRELESS COMMUNICATIONS & MOBILE COMPUTING CONFERENCE (IWCMC), 2021, : 1175 - 1179
  • [28] Transient states analysis of 3D transformer structure
    Komeza, K.
    Welfle, H.
    Wiak, S.
    COMPEL - The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 1998, 17 (02): : 252 - 256
  • [29] Efficient 3D Semantic Segmentation with Superpoint Transformer
    Robert, Damien
    Raguet, Hugo
    Landrieu, Loic
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 17149 - 17158
  • [30] Query Refinement Transformer for 3D Instance Segmentation
    Lu, Jiahao
    Deng, Jiacheng
    Wang, Chuxin
    He, Jianfeng
    Zhang, Tianzhu
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 18470 - 18480