Enhancing security in brain–computer interface applications with deep learning: Electroencephalogram-based user identification

被引:1
|
作者
Seyfizadeh, Ali [1 ]
Peach, Robert L. [2 ,3 ]
Tovote, Philip [4 ]
Isaias, Ioannis U. [2 ,5 ]
Volkmann, Jens [2 ]
Muthuraman, Muthuraman [1 ]
机构
[1] Neural Engineering with Signal Analytics and Artificial Intelligence, Department of Neurology, University Hospital Würzburg, Würzburg,97080, Germany
[2] Department of Neurology, University Hospital Würzburg, Würzburg, Germany
[3] Department of Brain Sciences, Imperial College London, London, United Kingdom
[4] Defense Circuits Lab, Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
[5] Centro Parkinson e Parkinsonismi, ASST G. Pini-CTO, Milano, Italy
关键词
All Open Access; Hybrid Gold;
D O I
10.1016/j.eswa.2024.124218
中图分类号
学科分类号
摘要
Wavelet transforms
引用
收藏
相关论文
共 50 条
  • [41] Early detection of depression through facial expression recognition and electroencephalogram-based artificial intelligence-assisted graphical user interface
    Gajendra Kumar
    Tanaya Das
    Kuldeep Singh
    [J]. Neural Computing and Applications, 2024, 36 : 6937 - 6954
  • [42] Schizo-Net: A novel Schizophrenia Diagnosis Framework Using Late Fusion Multimodal Deep Learning on Electroencephalogram-Based Brain Connectivity Indices
    Grover, Nitin
    Chharia, Aviral
    Upadhyay, Rahul
    Longo, Luca
    [J]. IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2023, 31 : 464 - 473
  • [43] Feature Extraction of Brain-Computer Interface Electroencephalogram Based on Motor Imagery
    Shi, Tianwei
    Ren, Ling
    Cui, Wenhua
    [J]. IEEE SENSORS JOURNAL, 2020, 20 (20) : 11787 - 11794
  • [44] Deep Learning EEG Response Representation for Brain Computer Interface
    Liu Jingwei
    Cheng Yin
    Zhang Weidong
    [J]. 2015 34TH CHINESE CONTROL CONFERENCE (CCC), 2015, : 3518 - 3523
  • [45] Raw Electroencephalogram-Based Cognitive Workload Classification Using Directed and Nondirected Functional Connectivity Analysis and Deep Learning
    Gupta, Anmol
    Daniel, Ronnie
    Rao, Akash
    Roy, Partha Pratim
    Chandra, Sushil
    Kim, Byung-Gyu
    [J]. BIG DATA, 2023, 11 (04) : 307 - 319
  • [46] Enhancing the accuracy of electroencephalogram-based emotion recognition through Long Short-Term Memory recurrent deep neural networks
    Yousefi, Mohammad Reza
    Dehghani, Amin
    Taghaavifar, Hamid
    [J]. FRONTIERS IN HUMAN NEUROSCIENCE, 2023, 17
  • [47] Electroencephalogram (EEG) Brain Signals to Detect Alcoholism Based on Deep Learning
    Qazi, Emad-ul-Haq
    Hussain, Muhammad
    AboAlsamh, Hatim A.
    [J]. CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 67 (03): : 3329 - 3348
  • [48] Development of a Deep Learning-Based Brain-Computer Interface for Visual Imagery Recognition
    Castro, Aldwin Jomar F.
    Cruzit, Justine Nicole P.
    De Guzman, Jerome Jeric C.
    Pajarillo, John Jeru T.
    Rilloraza, Alyssa Margaux M.
    Nieles, Jay Patrick M.
    Prado, Seigfred, V
    [J]. 2020 16TH IEEE INTERNATIONAL COLLOQUIUM ON SIGNAL PROCESSING & ITS APPLICATIONS (CSPA 2020), 2020, : 166 - 170
  • [49] Brain Computer Interface Based Thought Recognition System Using a Hybrid Deep Learning Model
    Janeera, D. A.
    Sasipriya, S.
    [J]. IETE JOURNAL OF RESEARCH, 2023, 69 (10) : 6888 - 6901
  • [50] Applying deep learning in brain computer interface to classify motor imagery
    Cano-Izquierdo, Jose-Manuel
    Ibarrola, Julio
    Almonacid, Miguel
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 45 (05) : 8747 - 8760