Diffusion models for out-of-distribution detection in digital pathology

被引:0
|
作者
Linmans, Jasper [1 ]
Raya, Gabriel [2 ]
van der Laak, Jeroen [1 ,3 ]
Litjens, Geert [1 ]
机构
[1] Department of Pathology, RadboudUMC Graduate School, Radboud University Medical Center, Nijmegen, Netherlands
[2] Jheronimus Academy of Data Science, ’s-Hertogenbosch, Netherlands
[3] Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden
关键词
Unsupervised learning;
D O I
暂无
中图分类号
学科分类号
摘要
The ability to detect anomalies, i.e. anything not seen during training or out-of-distribution (OOD), in medical imaging applications is essential for successfully deploying machine learning systems. Filtering out OOD data using unsupervised learning is especially promising because it does not require costly annotations. A new class of models called AnoDDPMs, based on denoising diffusion probabilistic models (DDPMs), has recently achieved significant progress in unsupervised OOD detection. This work provides a benchmark for unsupervised OOD detection methods in digital pathology. By leveraging fast sampling techniques, we apply AnoDDPM on a large enough scale for whole-slide image analysis on the complete test set of the Camelyon16 challenge. Based on ROC analysis, we show that AnoDDPMs can detect OOD data with an AUC of up to 94.13 and 86.93 on two patch-level OOD detection tasks, outperforming the other unsupervised methods. We observe that AnoDDPMs alter the semantic properties of inputs, replacing anomalous data with more benign-looking tissue. Furthermore, we highlight the flexibility of AnoDDPM towards different information bottlenecks by evaluating reconstruction errors for inputs with different signal-to-noise ratios. While there is still a significant performance gap with fully supervised learning, AnoDDPMs show considerable promise in the field of OOD detection in digital pathology. © 2024 The Author(s)
引用
收藏
相关论文
共 50 条
  • [11] Out-of-distribution Detection Learning with Unreliable Out-of-distribution Sources
    Zheng, Haotian
    Wang, Qizhou
    Fang, Zhen
    Xia, Xiaobo
    Liu, Feng
    Liu, Tongliang
    Han, Bo
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [12] Dual Conditioned Diffusion Models for Out-of-Distribution Detection: Application to Fetal Ultrasound Videos
    Mishra, Divyanshu
    Zhao, He
    Saha, Pramit
    Papageorghiou, Aris T.
    Noble, J. Alison
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT I, 2023, 14220 : 216 - 226
  • [13] Understanding the Generalization of Pretrained Diffusion Models on Out-of-Distribution Data
    Ramachandran, Sai Niranjan
    Mukhopadhyay, Rudrabha
    Agarwal, Madhav
    Jawahar, C. V.
    Namboodiri, Vinay
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 13, 2024, : 14767 - 14775
  • [14] Efficient Out-of-Distribution Detection in Digital Pathology Using Multi-Head Convolutional Neural Networks
    Linmans, Jasper
    van der Laak, Jeroen
    Litjens, Geert
    MEDICAL IMAGING WITH DEEP LEARNING, VOL 121, 2020, 121 : 465 - 478
  • [15] On the Learnability of Out-of-distribution Detection
    Fang, Zhen
    Li, Yixuan
    Liu, Feng
    Han, Bo
    Lu, Jie
    Journal of Machine Learning Research, 2024, 25
  • [16] Entropic Out-of-Distribution Detection
    Macedo, David
    Ren, Tsang Ing
    Zanchettin, Cleber
    Oliveira, Adriano L., I
    Ludermir, Teresa
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [17] Watermarking for Out-of-distribution Detection
    Wang, Qizhou
    Liu, Feng
    Zhang, Yonggang
    Zhang, Jing
    Gong, Chen
    Liu, Tongliang
    Han, Bo
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [18] Is Out-of-Distribution Detection Learnable?
    Fang, Zhen
    Li, Yixuan
    Lu, Jie
    Dong, Jiahua
    Han, Bo
    Liu, Feng
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [19] On the Learnability of Out-of-distribution Detection
    Fang, Zhen
    Li, Yixuan
    Liu, Feng
    Han, Bo
    Lu, Jie
    JOURNAL OF MACHINE LEARNING RESEARCH, 2024, 25
  • [20] DEEPLENS: Interactive Out-of-distribution Data Detection in NLP Models
    Song, Da
    Wang, Zhijie
    Huang, Yuheng
    Ma, Lei
    Zhang, Tianyi
    PROCEEDINGS OF THE 2023 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, CHI 2023, 2023,