Laser cooling of Yb3+:KYW

被引:0
|
作者
Cheng, Long [1 ]
Andre, Laura B. [1 ]
Salkeld, Alexander J. [1 ]
Andrade, Luis H.C. [2 ]
Lima, Sandro M. [2 ]
Silva, Junior R. [2 ]
Rytz, Daniel [3 ]
Rand, Stephen C. [1 ]
机构
[1] EECS Department, University of Michigan, 1301 Beal Ave., Ann Arbor,MI,48109-2122, United States
[2] Programa de Pós-graduação em Recursos Naturais, Universidade Estadual de Mato Grosso do Sul, Dourados-MS,79804-970, Brazil
[3] FEE GmbH, Struthstr. 2, Idar-Oberstein,D-55743, Germany
来源
Optics Express | 2020年 / 28卷 / 03期
关键词
Red Shift - Laser cooling - Ytterbium - Absorption spectroscopy - Alumina - Yttrium aluminum garnet - Doppler effect;
D O I
暂无
中图分类号
学科分类号
摘要
We report the first observation of laser cooling in Yb3+:KYW and validate the results by comparison with experiments in the well-studied material Yb3+:YAG. Radiation from a single-mode Ti:Al2O3 laser was used to achieve cooling of 1.5 K/W in 1% Yb:KYW at 1025 nm, comparing well with the reference material 3% Yb:YAG which cooled by 3.5 K/W at 1030 nm under open lab conditions. Experimental results for KYW crystals mounted on aerogels and doped with 1-20% Yb were in excellent agreement with the theoretical dependence of cooling power on the Yb absorption spectrum. Elimination of thermal conduction through the sample support structure was found to permit the attainment of lower temperatures and to simplify modeling of radiation balance conditions in self-cooled lasers with longitudinal thermal gradients. Contrary to the notion that more coolant ions yield higher cooling power, concentrations of Yb over 1% caused re-absorption of luminescence in KYW crystals, leading to a progressive red shift in the optimal cooling wavelength and the prevention of laser cooling altogether in a 20% sample at room temperature. The prospect of attaining radiation-balanced lasing in commercially-available tungstate crystals is evaluated. © 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:2778 / 2788
相关论文
共 50 条
  • [11] Laser action in (Yb3+:YCOB (Yb3+:YCa4OiBO3)3)
    Hammons, DA
    Eichenholz, JM
    Ye, Q
    Chai, BHT
    Shah, L
    Peale, RE
    Richardson, M
    Qiu, H
    OPTICS COMMUNICATIONS, 1998, 156 (4-6) : 327 - 330
  • [12] Laser cooling of 5 mol. % Yb3+:LuLiF4 crystal in air
    Zhong, Biao
    Luo, Hao
    Shi, Yanling
    Yin, Jianping
    OPTICAL ENGINEERING, 2017, 56 (01)
  • [13] Yb3+:YAG silica fiber laser
    Lai, Chien-Chih
    Huang, Kuang-Yao
    Tsai, Hann-Jong
    Hsu, Kuang-Yu
    Liu, Shih-Kun
    Cheng, Ching-Ting
    Ji, Kuan-Dong
    Ke, Chih-Peng
    Lin, Si-Rong
    Huang, Sheng-Lung
    OPTICS LETTERS, 2009, 34 (15) : 2357 - 2359
  • [14] A Ceramic Based Yb3+: YAG Laser
    Pirri, A.
    Alderighi, D.
    Toci, G.
    Vannini, M.
    LASER PHYSICS, 2010, 20 (05) : 931 - 935
  • [15] Thermal Lensing in High Power Yb:KYW Laser
    Loiko, P.
    Manjooran, S.
    Major, A.
    2017 PHOTONICS NORTH (PN), 2017,
  • [16] Optical shutters for a compact femtosecond Yb:KYW laser
    Rubtsova, N. N.
    Kovalyov, A. A.
    Ledovskikh, D. V.
    Preobrazhenskii, V. V.
    Putyato, M. A.
    Semyagin, B. R.
    Kuznetsov, S. A.
    Pivtsov, V. S.
    Semenko, A. V.
    LASER PHYSICS, 2020, 30 (02)
  • [17] Diode-Pumped Yb3+:YLF and Yb3+:CaF2 Laser Performance
    Pirri, Angela
    Alderighi, Daniele
    Toci, Guido
    Nikl, Martin
    Sato, Hiroki
    Tonelli, Mauro
    Vannini, Matteo
    2ND INTERNATIONAL CONFERENCE ON ULTRA-INTENSE LASER INTERACTION SCIENCE, 2010, 1209 : 91 - +
  • [18] Laser action in Yb3+:YCOB (Yb3+:YCa4O(BO3)3)
    Hammons, DA
    Eichenholz, JM
    Shah, L
    Ye, Q
    Peale, RE
    Chai, BHT
    Richardson, M
    Chin, A
    SOLID STATE LASERS VIII, 1999, 3613 : 226 - 231
  • [19] Widely tunable Yb:KYW laser with a volume Bragg grating
    Jacobsson, Bjorn
    Hellstrom, Jonas E.
    Pasiskevicius, Valdas
    Laurell, Fredrik
    OPTICS EXPRESS, 2007, 15 (03) : 1003 - 1010
  • [20] Laser cooling of Yb3+:LuLiF4 crystal below cryogenic temperature to 121 K
    Lei, Yongqing
    Zhong, Biao
    Yang, Tao
    Duan, Xuelu
    Xia, Meng
    Wang, Chaoyu
    Xu, Jiajin
    Zhang, Ziheng
    Ding, Jingxin
    Yin, Jianping
    APPLIED PHYSICS LETTERS, 2022, 120 (23)