Quantum Precision Limits of Displacement Noise-Free Interferometers

被引:0
|
作者
Gefen, Tuvia [1 ]
Tarafder, Rajashik [2 ,3 ]
Adhikari, Rana X. [3 ]
Chen, Yanbei [2 ]
机构
[1] CALTECH, Inst Quantum Informat & Matter, Pasadena, CA 91125 USA
[2] CALTECH, Walter Burke Inst Theoret Phys, Theoret Astrophys, Pasadena, CA 91125 USA
[3] CALTECH, LIGO Lab, Pasadena, CA 91125 USA
关键词
51;
D O I
10.1103/PhysRevLett.132.020801
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Current laser-interferometric gravitational wave detectors suffer from a fundamental limit to their precision due to the displacement noise of optical elements contributed by various sources. Several schemes for displacement noise-free interferometers (DFI) have been proposed to mitigate their effects. The idea behind these schemes is similar to decoherence-free subspaces in quantum sensing; i.e., certain modes contain information about the gravitational waves but are insensitive to the mirror motion (displacement noise). We derive quantum precision limits for general DFI schemes, including optimal measurement basis and optimal squeezing schemes. We introduce a triangular cavity DFI scheme and apply our general bounds to it. Precision analysis of this scheme with different noise models shows that the DFI property leads to interesting sensitivity profiles and improved precision due to noise mitigation and larger gain from squeezing.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] MODULATION, SIGNAL, AND QUANTUM NOISE IN INTERFEROMETERS
    MEERS, BJ
    STRAIN, KA
    PHYSICAL REVIEW A, 1991, 44 (07): : 4693 - 4703
  • [42] Estimation of Noise-Free Variance to Measure Heterogeneity
    Winkler, Tilo
    Melo, Marcos F. Vidal
    Degani-Costa, Luiza H.
    Harris, R. Scott
    Correia, John A.
    Musch, Guido
    Venegas, Jose G.
    PLoS One, 2015, 10 (04):
  • [43] Speckle Noise-Free Interconnective Holographic Projection
    Jeon, Hosung
    Hahn, Joonku
    PHOTONICS, 2022, 9 (12)
  • [44] Bounding the quantum limits of precision for phase estimation with loss and thermal noise
    Gagatsos, Christos N.
    Bash, Boulat A.
    Guha, Saikat
    Datta, Animesh
    PHYSICAL REVIEW A, 2017, 96 (06)
  • [45] A NOVEL NOISE-FREE PIXELS BASED IMPULSE NOISE FILTERING
    Majid, Abdul
    Mahmood, Muhammad Tariq
    Choi, Tae-Sun
    2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, 2010, : 125 - 128
  • [46] Electronic noise-free measurements of squeezed light
    Krivitsky, Leonid A.
    Andersen, Ulrik L.
    Dong, Ruifang
    Huck, Alexander
    Wittmann, Christoffer
    Leuchs, Gerd
    OPTICS LETTERS, 2008, 33 (20) : 2395 - 2397
  • [47] Noise-free spectroscopy cleans up images
    Offerhaus, Herman L.
    TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2012, 32 : V - V
  • [48] Noise-free magnetoencephalography recordings of brain function
    Volegov, P
    Matlachov, A
    Mosher, J
    Espy, MA
    Kraus, RH
    PHYSICS IN MEDICINE AND BIOLOGY, 2004, 49 (10): : 2117 - 2128
  • [49] Hyperspectral Unmixing via Noise-Free Model
    Li, Chunzhi
    Jiang, Yunliang
    Chen, Xiaohua
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (04): : 3277 - 3291
  • [50] Broadband noise-free optical quantum memory with neutral nitrogen-vacancy centers in diamond
    Poem, E.
    Weinzetl, C.
    Klatzow, J.
    Kaczmarek, K. T.
    Munns, J. H. D.
    Champion, T. F. M.
    Saunders, D. J.
    Nunn, J.
    Walmsley, I. A.
    PHYSICAL REVIEW B, 2015, 91 (20)