Black carbon emissions from light-duty passenger vehicles using ethanol blended gasoline fuels

被引:0
|
作者
Zheng X. [1 ,2 ]
Wu X. [2 ]
He L. [2 ]
Guo X. [3 ]
Wu Y. [2 ,4 ]
机构
[1] College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen
[2] School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing
[3] SINOPEC Research Institute of Petroleum Processing, Beijing
[4] State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing
来源
Aerosol and Air Quality Research | 2019年 / 19卷 / 07期
基金
中国国家自然科学基金;
关键词
Black carbon emissions; Cold start; Driving conditions; Ethanol blended fuels; Light duty passenger vehicles;
D O I
10.4209/aaqr.2019.12.0095
中图分类号
学科分类号
摘要
Vehicular emissions of soot vary with the driving conditions and fuel properties. In 2017, China’s central government released a policy to promote ethanol blended gasoline fuels, and this policy will be rolled out nationwide in 2020. It is necessary to characterize the emission differences between traditional vehicular fuels used in China and ethanol blended fuels. In this study, black carbon (BC) emissions from three gasoline light-duty passenger vehicles (LDPVs) were measured using the New European Driving Cycle (NEDC) and the Worldwide harmonized Light vehicles Test Cycle (WLTC). This study utilized three fuels, namely, two E10 fuels and a traditional gasoline (E0). The experimental results showed that the use of E10 blends (gasoline containing 10% ethanol) reduced BC emissions by 7–38%. Based on phase-separated analysis, BC emissions in the initial driving phase and the high-speed phase (e.g., the 1st ECE-15 phase in the NEDC and the extra-high speed phase in the WLTC) represented the majority (86–96%) of the total BC emissions, and the emission factors during the 1st ECE-15 phase (NEDC) and the low-speed phase (WLTC) were 0.36 mg km–1 and 0.37 mg km–1 lower, respectively, for the ethanol-blended fuels than the ethanol-free fuel. Furthermore, we found that using ethanol-blended fuels could reduce the mass concentration of the BC emitted during cold starts, which lasted 53– 95 s for the tested vehicles, by 4.28 ± 4.19 mg km–1 and 2.06 ± 0.17 mg km–1 in the NEDC and the WLTC, respectively. © Taiwan Association for Aerosol Research.
引用
收藏
页码:1645 / 1654
页数:9
相关论文
共 50 条
  • [31] Cradle-to-grave mercury emissions of light-duty gasoline and electric vehicles in China
    Gan, Yu
    Lu, Zifeng
    Wu, Qingru
    He, Xin
    Dai, Qiang
    Kelly, Jarod C.
    Ankathi, Sharath K.
    Wang, Michael
    RESOURCES CONSERVATION AND RECYCLING, 2023, 190
  • [32] Modeling enleanment emissions for light-duty vehicles
    An, F
    Barth, M
    Scora, G
    Ross, M
    ENERGY, AIR QUALITY AND FUELS 1998, 1998, (1641): : 48 - 57
  • [33] European Regulatory Framework and Particulate Matter Emissions of Gasoline Light-Duty Vehicles: A Review
    Giechaskiel, Barouch
    Joshi, Ameya
    Ntziachristos, Leonidas
    Dilara, Panagiota
    CATALYSTS, 2019, 9 (07)
  • [34] Characterizing emissions and optical properties of particulate matter from PFI and GDI light-duty gasoline vehicles
    Bahreini, R.
    Xue, J.
    Johnson, K.
    Durbin, T.
    Quiros, D.
    Hu, S.
    Huai, T.
    Ayala, A.
    Jung, H.
    JOURNAL OF AEROSOL SCIENCE, 2015, 90 : 144 - 153
  • [35] Characterizing emissions and optical properties of particulate matter from PFI and GDI light-duty gasoline vehicles
    Bahreini, R.
    Xue, J.
    Johnson, K.
    Durbin, T.
    Quiros, D.
    Hu, S.
    Huai, T.
    Ayala, A.
    Jung, H.
    Journal of Aerosol Science, 2015, 90 : 144 - 153
  • [36] Temperature Effects on Particulate Matter Emissions from Light-Duty, Gasoline-Powered Motor Vehicles
    Nam, Edward
    Kishan, Sandeep
    Baldauf, Richard W.
    Fulper, Carl R.
    Sabisch, Michael
    Warila, James
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2010, 44 (12) : 4672 - 4677
  • [37] Real-World Freeway and Ramp Activity and Emissions for Light-Duty Gasoline Vehicles
    Frey, H. Christopher
    Delavarrafiee, Maryam
    Singh, Sanjam
    TRANSPORTATION RESEARCH RECORD, 2017, (2627) : 17 - 25
  • [38] Contribution of Lubricating Oil to Particulate Matter Emissions from Light-Duty Gasoline Vehicles in Kansas City
    Sonntag, Darrell B.
    Bailey, Chad R.
    Fulper, Carl R.
    Baldauf, Richard W.
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2012, 46 (07) : 4191 - 4199
  • [39] Analysis of Learning Algorithms for Predicting Carbon Emissions of Light-Duty Vehicles
    Kale, Rashmi B.
    Shaikh, Nuzhat Faiz
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (07) : 584 - 589
  • [40] Assessing methods for comparing emissions from gasoline and diesel light-duty vehicles based on microscale measurements
    Coelho, Margarida C.
    Frey, H. Christopher
    Rouphail, Nagui M.
    Zhai, Haibo
    Pelkmans, Luc
    TRANSPORTATION RESEARCH PART D-TRANSPORT AND ENVIRONMENT, 2009, 14 (02) : 91 - 99