ALGEBRAIC COHERENT CONFLUENCE AND HIGHER GLOBULAR KLEENE ALGEBRAS

被引:0
|
作者
Calk C. [1 ]
Goubault E. [1 ]
Malbos P. [2 ]
Struth G. [3 ,4 ]
机构
[1] LIX, École Polytechnique, CNRS, IP-Paris, Palaiseau
[2] Université Claude Bernard Lyon 1, CNRS UMR 5208, Institut Camille Jordan, 43 Blvd. du 11 novembre 1918, Villeurbanne cedex
[3] Department of Computer Science, The University of Sheffield, Regent Court, 211 Portobello, Sheffield
[4] Collegium de Lyon, 26 Place Bellecour, Lyon
来源
Logical Methods in Computer Science | 2022年 / 18卷 / 04期
关键词
coherence; confluence; higher dimensional rewriting; Modal Kleene algebras;
D O I
10.46298/lmcs-18(4:9)2022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We extend the formalisation of confluence results in Kleene algebras to a formalisation of coherent confluence proofs. For this, we introduce the structure of higher globular Kleene algebra, a higher-dimensional generalisation of modal and concurrent Kleene algebra. We calculate a coherent Church-Rosser theorem and a coherent Newman’s lemma in higher Kleene algebras by equational reasoning. We instantiate these results in the context of higher rewriting systems modelled by polygraphs. © C. Calk, E. Goubault, P. Malbos, and G. Struth.
引用
收藏
页码:9:1 / 9:43
相关论文
共 50 条