Use of a digital twin for process optimization and predictive maintenance using the machine tools as example

被引:0
|
作者
Schmucker B. [1 ]
Ellinger J. [1 ]
Benker M. [1 ]
Semm T. [1 ]
Zäh M.F. [1 ]
机构
[1] Schmucker, Benedikt
[2] Ellinger, Johannes
[3] Benker, Maximilian
[4] Semm, Thomas
[5] Zäh, Michael F.
来源
| 1600年 / Carl Hanser Verlag, Kolbergerstrasse 22, Munchen, D-81679, Germany卷 / 115期
关键词
Modal analysis - Dynamic loads - Machining - Digital storage - Machine components - Electronic data interchange;
D O I
10.3139/104.112303
中图分类号
学科分类号
摘要
The economic use of machine tools is highly dependent on the material removal rate and the amount of machine downtime. As a result, manufacturing companies focus on increasing feed rates and cutting depths and on reducing the number of necessary maintenance measures. The digital twin enables the optimization of machining processes, while obeying the static and dynamic load limits, through a permanent data exchange between the real machine tool and its virtual representation. Additionally, the acquisition of data during the lifetime of machine tools allows to detect changes in the dynamic behaviour of the feed drive components. Variations of the determined modal parameters indicate changes in the wear condition. By means of a probabilistic classification its future progression can be forecasted. © Carl Hanser Verlag GmbH & Co. KG.
引用
收藏
页码:78 / 83
页数:5
相关论文
共 50 条
  • [41] An integrated optimization method for measurement points layout and error modeling for digital twin of CNC machine tools
    Sa, Guodong
    Jiang, Zhengyang
    Liu, Zhenyu
    Sun, Jiacheng
    Qiu, Chan
    He, Liang
    Tan, Jianrong
    [J]. PRECISION ENGINEERING-JOURNAL OF THE INTERNATIONAL SOCIETIES FOR PRECISION ENGINEERING AND NANOTECHNOLOGY, 2024, 90 : 1 - 11
  • [42] A System Predictive Maintenance Framework for Advanced Reactors Using a Data-Driven Digital Twin
    Rivas, Andy
    Delipei, Gregory Kyriakos
    Hou, Jason
    [J]. NUCLEAR SCIENCE AND ENGINEERING, 2024,
  • [43] Maintenance Digital Twin using vibration data
    Abbate, Raffaele
    Caterino, Mario
    Fera, Marcello
    Caputo, Francesco
    [J]. 3RD INTERNATIONAL CONFERENCE ON INDUSTRY 4.0 AND SMART MANUFACTURING, 2022, 200 : 546 - 555
  • [44] Behavior of Dynamic Preventive Maintenance Optimization for Machine Tools
    Lanza, Gisela
    Niggeschmidt, Stephan
    Werner, Patrick
    [J]. ANNUAL RELIABILITY AND MAINTAINABILITY SYMPOSIUM, 2009 PROCEEDINGS, 2009, : 316 - 321
  • [45] Methodology for enabling Digital Twin using advanced physics-based modelling in predictive maintenance
    Aivaliotis, P.
    Georgoulias, K.
    Arkouli, Z.
    Makris, S.
    [J]. 52ND CIRP CONFERENCE ON MANUFACTURING SYSTEMS (CMS), 2019, 81 : 417 - 422
  • [46] In-process digital twin estimation for high-performance machine tools with coupled multibody dynamics
    Wang, Chia-Pei
    Erkorkmaz, Kaan
    McPhee, John
    Engin, Serafettin
    [J]. CIRP ANNALS-MANUFACTURING TECHNOLOGY, 2020, 69 (01) : 321 - 324
  • [47] Reference architecture for digital twin-based predictive maintenance systems
    van Dinter, Raymon
    Tekinerdogan, Bedir
    Catal, Cagatay
    [J]. COMPUTERS & INDUSTRIAL ENGINEERING, 2023, 177
  • [48] Explorative hybrid digital twin framework for predictive maintenance in steel industry
    Panagou, Sotirios
    Fruggiero, Fabio
    del Vecchio, Carmen
    Sarda, Kisan
    Menchetti, Fernando
    Piedimonte, Luca
    Natale, Oreste Riccardo
    Passariello, Salvatore
    [J]. IFAC PAPERSONLINE, 2022, 55 (40): : 289 - 294
  • [49] Predictive Maintenance of an Archeological Park: An IoT and Digital Twin Based Approach
    Cecere, Liliana
    Colace, Francesco
    Lorusso, Angelo
    Santaniello, Domenico
    [J]. ARTIFICIAL INTELLIGENCE IN HCI, PT II, AI-HCI 2024, 2024, 14735 : 323 - 341
  • [50] Digital twin–driven aero-engine intelligent predictive maintenance
    Minglan Xiong
    Huawei Wang
    Qiang Fu
    Yi Xu
    [J]. The International Journal of Advanced Manufacturing Technology, 2021, 114 : 3751 - 3761