Use of a digital twin for process optimization and predictive maintenance using the machine tools as example

被引:0
|
作者
Schmucker B. [1 ]
Ellinger J. [1 ]
Benker M. [1 ]
Semm T. [1 ]
Zäh M.F. [1 ]
机构
[1] Schmucker, Benedikt
[2] Ellinger, Johannes
[3] Benker, Maximilian
[4] Semm, Thomas
[5] Zäh, Michael F.
来源
| 1600年 / Carl Hanser Verlag, Kolbergerstrasse 22, Munchen, D-81679, Germany卷 / 115期
关键词
Modal analysis - Dynamic loads - Machining - Digital storage - Machine components - Electronic data interchange;
D O I
10.3139/104.112303
中图分类号
学科分类号
摘要
The economic use of machine tools is highly dependent on the material removal rate and the amount of machine downtime. As a result, manufacturing companies focus on increasing feed rates and cutting depths and on reducing the number of necessary maintenance measures. The digital twin enables the optimization of machining processes, while obeying the static and dynamic load limits, through a permanent data exchange between the real machine tool and its virtual representation. Additionally, the acquisition of data during the lifetime of machine tools allows to detect changes in the dynamic behaviour of the feed drive components. Variations of the determined modal parameters indicate changes in the wear condition. By means of a probabilistic classification its future progression can be forecasted. © Carl Hanser Verlag GmbH & Co. KG.
引用
收藏
页码:78 / 83
页数:5
相关论文
共 50 条
  • [1] Using a Digital Twin in Predictive Maintenance
    Rao, Samvith Vasudeva
    [J]. JPT, Journal of Petroleum Technology, 2020, 72 (08): : 42 - 44
  • [2] The use of Digital Twin for predictive maintenance in manufacturing
    Aivaliotis, P.
    Georgoulias, K.
    Chryssolouris, G.
    [J]. INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING, 2019, 32 (11) : 1067 - 1080
  • [3] Digital Twin for Predictive Maintenance
    Liu, Zheng
    Blasch, Erik
    Liao, Min
    Yang, Chunsheng
    Tsukada, Kazuhiko
    Meyendorf, Norbert
    [J]. NDE 4.0, PREDICTIVE MAINTENANCE, COMMUNICATION, AND ENERGY SYSTEMS, 2023, 12489
  • [4] The digital twin of machine tools
    Fischer A.
    Spescha D.
    Semm T.
    Ceresa N.
    Zäh M.F.
    [J]. WT Werkstattstechnik, 2021, 111 (03): : 179 - 184
  • [5] Machining Condition Optimization based on a Digital Twin of Machine Tools
    Jo, Ok Hyun
    Lee, Wonkyun
    Lee, Kang Jae
    [J]. TRANSACTIONS OF THE KOREAN SOCIETY OF MECHANICAL ENGINEERS A, 2020, 44 (02) : 117 - 125
  • [6] The advance of digital twin for predictive maintenance: The role and function of machine learning
    Chen, Chong
    Fu, Huibin
    Zheng, Yu
    Tao, Fei
    Liu, Ying
    [J]. JOURNAL OF MANUFACTURING SYSTEMS, 2023, 71 : 581 - 594
  • [7] Robotic Cell Reliability Optimization Based on Digital Twin and Predictive Maintenance
    Mourtzis, Dimitris
    Tsoubou, Sofia
    Angelopoulos, John
    [J]. ELECTRONICS, 2023, 12 (09)
  • [8] Design of a Digital Twin for an Industrial Vacuum Process: A Predictive Maintenance Approach
    Yakhni, Mohammad F.
    Hosni, Houssem
    Cauet, Sebastien
    Sakout, Anas
    Etien, Erik
    Rambault, Laurent
    Assoum, Hassan
    El-Gohary, Mohamed
    [J]. MACHINES, 2022, 10 (08)
  • [9] The Role of Data Fusion in Predictive Maintenance Using Digital Twin
    Liu, Zheng
    Meyendorf, Norbert
    Mrad, Nezih
    [J]. 44TH ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION, VOL 37, 2018, 1949
  • [10] Machine learning-based digital twin of a conveyor belt for predictive maintenance
    Pulcini, Valerio
    Modoni, Gianfranco
    [J]. INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2024, 133 (11-12): : 6095 - 6110