Deep learning-based spatio-temporal prediction and uncertainty assessment of urban PM2.5 distribution

被引:0
|
作者
Liu, Huimin [1 ]
Zhang, Chenwei [1 ]
Chen, Kaiqi [1 ]
Deng, Min [1 ]
Peng, Chong [1 ]
机构
[1] Department of Geo-Informatics, Central South University, Changsha,410083, China
关键词
D O I
10.11947/j.AGCS.2024.20230071
中图分类号
学科分类号
摘要
25
引用
收藏
页码:750 / 760
相关论文
共 50 条
  • [1] Uncertainty assessment of PM2.5 probability mapping by using spatio-temporal indicator kriging
    Mei, Yang
    Zhang, Wen-Ting
    Yang, Yong
    Zhao, Yu
    Li, Lu-Lu
    [J]. Zhongguo Huanjing Kexue/China Environmental Science, 2018, 38 (01): : 35 - 43
  • [2] Spatio-temporal distribution and chemical composition of PM2.5 in Changsha, China
    Nan-Nan Zhang
    Yang Guan
    Lei Yu
    Fang Ma
    Yi-Fan Li
    [J]. Journal of Atmospheric Chemistry, 2020, 77 : 1 - 16
  • [3] Hybrid Spatio-temporal Deep Learning Framework for Particulate Matter(PM2.5) Concentration Forecasting
    Abirami, S.
    Chitra, P.
    Madhumitha, R.
    Kesavan, Ragul S.
    [J]. 2020 INTERNATIONAL CONFERENCE ON INNOVATIVE TRENDS IN INFORMATION TECHNOLOGY (ICITIIT), 2020,
  • [4] A deep learning-based PM2.5 concentration estimator
    Sun, Kezheng
    Tang, Lijuan
    Qian, JianSheng
    Wang, Guangcheng
    Lou, Cairong
    [J]. DISPLAYS, 2021, 69
  • [5] Compositional Spatio-Temporal PM2.5 Modelling in Wildfires
    Sanchez-Balseca, Joseph
    Perez-Foguet, Agustii
    [J]. ATMOSPHERE, 2021, 12 (10)
  • [6] Adaptive scalable spatio-temporal graph convolutional network for PM2.5 prediction
    Ni, Qingjian
    Wang, Yuhui
    Yuan, Jiayi
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 126
  • [7] Spatio-Temporal Prediction of Roadside PM2.5 based on Sparse Mobile Sensing and Traffic Information
    Kakarla, A.
    Munagala, V. S. K. R.
    Ishizaka, T.
    Fukuda, A.
    Jana, S.
    [J]. 2021 NATIONAL CONFERENCE ON COMMUNICATIONS (NCC), 2021, : 481 - 485
  • [8] Forecasting PM2.5 Concentration using Spatio-Temporal Extreme Learning Machine
    Liu, Bo
    Yan, Shuo
    Li, Jianqiang
    Li, Yong
    [J]. 2016 15TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2016), 2016, : 950 - 953
  • [9] A new ensemble spatio-temporal PM2.5 prediction method based on graph attention recursive networks and reinforcement learning
    Tan, Jing
    Liu, Hui
    Li, Yanfei
    Yin, Shi
    Yu, Chengqing
    [J]. CHAOS SOLITONS & FRACTALS, 2022, 162
  • [10] A new ensemble spatio-temporal PM2.5 prediction method based on graph attention recursive networks and reinforcement learning
    Tan, Jing
    Liu, Hui
    Li, Yanfei
    Yin, Shi
    Yu, Chengqing
    [J]. Chaos, Solitons and Fractals, 2022, 162