Compositional Spatio-Temporal PM2.5 Modelling in Wildfires

被引:3
|
作者
Sanchez-Balseca, Joseph [1 ]
Perez-Foguet, Agustii [1 ]
机构
[1] Univ Politecn Catalunya UPC, Civil & Environm Engn Dept, Res Grp Engn Sci & Global Dev EScGD, Campus Nord, Barcelona 08034, Spain
关键词
air pollution; CoDa; environmental statistics; DLM; Gaussian fields; SECONDARY ORGANIC AEROSOL; PARTICULATE MATTER; SOURCE APPORTIONMENT; STATISTICAL-ANALYSIS; FOREST-FIRES; EMISSIONS; CARBON; TEMPERATURE; PREDICTION; IMPACT;
D O I
10.3390/atmos12101309
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Wildfires are natural ecological processes that generate high levels of fine particulate matter (PM2.5) that are dispersed into the atmosphere. PM2.5 could be a potential health problem due to its size. Having adequate numerical models to predict the spatial and temporal distribution of PM2.5 helps to mitigate the impact on human health. The compositional data approach is widely used in the environmental sciences and concentration analyses (parts of a whole). This numerical approach in the modelling process avoids one common statistical problem: the spurious correlation. PM2.5 is a part of the atmospheric composition. In this way, this study developed an hourly spatio-temporal PM2.5 model based on the dynamic linear modelling framework (DLM) with a compositional approach. The results of the model are extended using a Gaussian-Mattern field. The modelling of PM2.5 using a compositional approach presented adequate quality model indices (NSE = 0.82, RMSE = 0.23, and a Pearson correlation coefficient of 0.91); however, the correlation range showed a slightly lower value than the conventional/traditional approach. The proposed method could be used in spatial prediction in places without monitoring stations.</p>
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Simulating spatio-temporal dynamics of surface PM2.5 emitted from Alaskan wildfires
    Chen, Dong
    Billmire, Michael
    Loughner, Christopher P.
    Bredder, Allison
    French, Nancy H. F.
    Kim, Hyun Cheol
    Loboda, Tatiana, V
    [J]. SCIENCE OF THE TOTAL ENVIRONMENT, 2023, 898
  • [2] Modelling daily PM2.5 concentrations at high spatio-temporal resolution across Switzerland
    de Hoogh, Kees
    Heritier, Harris
    Stafoggia, Massimo
    Kunzli, Nino
    Kloog, Itai
    [J]. ENVIRONMENTAL POLLUTION, 2018, 233 : 1147 - 1154
  • [3] Spatio-temporal distribution and chemical composition of PM2.5 in Changsha, China
    Nan-Nan Zhang
    Yang Guan
    Lei Yu
    Fang Ma
    Yi-Fan Li
    [J]. Journal of Atmospheric Chemistry, 2020, 77 : 1 - 16
  • [4] An adaptive spatio-temporal neural network for PM2.5 concentration forecasting
    Zhang, Xiaoxia
    Li, Qixiong
    Liang, Dong
    [J]. ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (12) : 14483 - 14510
  • [5] SPATIO-TEMPORAL ANALYSIS OF PM2.5 OVER MARMARA REGION, TURKEY
    Kahya, Ceyhan
    Balcik, Filiz Bektas
    Oztaner, Yasar Burak
    Ozcomak, Duygu
    Seker, Dursun Zafer
    [J]. FRESENIUS ENVIRONMENTAL BULLETIN, 2017, 26 (01): : 310 - 317
  • [6] An adaptive spatio-temporal neural network for PM2.5 concentration forecasting
    Xiaoxia Zhang
    Qixiong Li
    Dong Liang
    [J]. Artificial Intelligence Review, 2023, 56 : 14483 - 14510
  • [7] Spatio-temporal analysis of PM2.5 and policies in Northwestern South America
    Casallas, Alejandro
    Paula Castillo-Camacho, Maria
    Andres Guevara-Luna, Marco
    Gonzalez, Yuri
    Sanchez, Edwin
    Carlos Belalcazar, Luis
    [J]. SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 852
  • [8] Modelling hourly spatio-temporal PM2.5 concentration in wildfire scenarios using dynamic linear models
    Sanchez-Balseca, Joseph
    Perez-Foguet, Agusti
    [J]. ATMOSPHERIC RESEARCH, 2020, 242
  • [9] Spatio-temporal variations of PM2.5 emission in China from 2005 to 2014
    Jin, Qiang
    Fang, Xinyue
    Wen, Bo
    Shan, Aidang
    [J]. CHEMOSPHERE, 2017, 183 : 429 - 436
  • [10] Forecasting PM2.5 Concentration using Spatio-Temporal Extreme Learning Machine
    Liu, Bo
    Yan, Shuo
    Li, Jianqiang
    Li, Yong
    [J]. 2016 15TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2016), 2016, : 950 - 953