Ballistic response of ultra-high molecular weight polyethylene laminate impacted by mild steel core projectiles

被引:6
|
作者
He Y. [1 ,2 ,3 ]
Jiao Y. [1 ,2 ]
Zhou J.Q. [3 ]
Lei H. [4 ]
Jia N. [1 ,2 ,3 ]
Chen L. [1 ,2 ]
Zhang D. [5 ]
机构
[1] School of Textile Science and Engineering, Tiangong University, Tianjin
[2] Key Laboratory of Advanced Textile Composite Materials, Ministry of Education, Institute of Textile Composite Materials, Tiangong University, Tianjin
[3] Beijing Protech New Material Science Co., Ltd., Beijing
[4] State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing
[5] Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi
关键词
A; Laminate; B. Impact behavior; C. X-ray computed tomography; D. Damage mechanism;
D O I
10.1016/j.ijimpeng.2022.104338
中图分类号
学科分类号
摘要
This paper presents the effect of interlaminar shear property on the ballistic response of ultra-high molecular weight polyethylene (UHMWPE) fiber composite laminate and discusses the detailed progressive ballistic damage process. Specifically, two kinds of UHMWPE fiber composite laminates with different interlaminar shear strength (ILSS) are impacted by a standard projectile (7.62 mm × 39 mm), and their multi-scale internal damage morphologies are characterized. Based on damage patterns, an evaluation model of laminate energy absorption is established to analyze the dissipation mechanism of the kinetic energy of the projectile. Results of ballistic tests indicate that the reduction of ILSS may result in the degradation of anti-penetration performance and in more serious internal damage. Internal damage morphologies show that shear fracture and delamination fracture are the primary failure modes during ballistic impact. The energy absorption by the laminate via tensile deformation, delamination failure and shear failure may account for 56.21%, 17.45%, and 16.49% of the projectile kinetic energy, respectively. Hence, tensile deformation may be the primary energy dissipation mechanism of projectile kinetic energy. © 2022
引用
收藏
相关论文
共 50 条
  • [31] WEAR OF HIGHLY CRYSTALLINE ULTRA-HIGH MOLECULAR WEIGHT POLYETHYLENE
    Van Citters, Douglas W.
    Levack, Ashley E.
    Kennedy, Francis E.
    PROCEEDINGS OF THE STLE/ASME INTERNATIONAL JOINT TRIBOLOGY CONFERENCE 2008, 2009, : 135 - 137
  • [32] Fatigue crack propagation of ultra-high molecular weight polyethylene
    Suyitno
    Pujilaksono, Lazuardi
    2017 7TH INTERNATIONAL ANNUAL ENGINEERING SEMINAR (INAES), 2017, : 130 - 134
  • [33] The breaking strength of ultra-high molecular weight polyethylene fibers
    Department of Chemistry, Coll. Environ. Sci. Forest., Stt. U., Syracuse, NY 13210, United States
    Polymer, 26 (7261-7274):
  • [34] The effects of ion bombardment of ultra-high molecular weight polyethylene
    Turos, A.
    Abdul-Kader, A. M.
    Grambole, D.
    Jagielski, J.
    Piatkowska, A.
    Madi, N. K.
    Al-Maadeed, M.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2006, 249 (1-2 SPEC. ISS.): : 660 - 664
  • [35] Tribological study of porous ultra-high molecular weight polyethylene
    College of Mechanical and Material Engineering, China Three Gorges University, Yichang 443002, China
    不详
    Mocaxue Xuebao, 2007, 6 (539-543):
  • [36] A study of the nanotribological fatigue of ultra-high molecular weight polyethylene
    Gibbs, C.
    Bender, J. W.
    TRIBOLOGY LETTERS, 2006, 22 (01) : 85 - 93
  • [37] DEVELOPMENT OF ANISOTROPY IN ULTRA-HIGH MOLECULAR-WEIGHT POLYETHYLENE
    GAO, P
    MACKLEY, MR
    NICHOLSON, TM
    POLYMER, 1990, 31 (02) : 237 - 242
  • [38] Tailored bimodal ultra-high molecular weight polyethylene particles
    Lafleur, Sarah
    Berthoud, Romain
    Ensinck, Richard
    Cordier, Astrid
    De Cremer, Gert
    Philippaerts, An
    Bastiaansen, Kees
    Margossian, Tigran
    Severn, John R.
    JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2018, 56 (15) : 1645 - 1656
  • [39] Radiation induced modifications in ultra-high molecular weight polyethylene
    Stephens, C. P.
    Benson, R. S.
    Chipara, M.
    SURFACE & COATINGS TECHNOLOGY, 2007, 201 (19-20): : 8230 - 8236
  • [40] The crosslinked ultra-high molecular weight polyethylene: Risk and limitation
    Costa, L
    Bracco, P
    del Prever, EMB
    BIOCERAMICS IN JOINT ARTHROPLASTY, 2004, : 89 - 92