Web Application with Machine Learning for House Price Prediction

被引:0
|
作者
Jáuregui-Velarde R. [1 ]
Andrade-Arenas L. [1 ]
Celis D.H. [2 ]
Dávila-Morán R.C. [3 ]
Cabanillas-Carbonell M. [4 ]
机构
[1] Universidad Privada Norbert Wiener, Lima
[2] Universidad Nacional Federico Villarreal, Lima
[3] Universidad Continental, Huancayo
[4] Universidad Privada del Norte, Lima
关键词
house price; linear regression; machine learning; price prediction; web application;
D O I
10.3991/IJIM.V17I23.38073
中图分类号
学科分类号
摘要
Every year, the price of a house changes due to different aspects, so accurately estimating the buying and selling price is a problem for real estate agencies. Therefore, the research work aims to build a Machine Learning (ML) model in Azure ML Studio and a web application to predict the buying and selling price of two types of houses: urban and rural houses, according to their characteristics, to minimize the forecast error in prediction. Following the basic stages of machine learning construction, we build the prediction model and the Rational Unified Process (RUP) methodology to build the web application. As a result, we obtained a model trained with a linear regression algorithm and a predictive ML model with a coefficient of determination of 95% and a web application that consumes the prediction model through an Application Programming Interface (API) that facilitates price prediction to customers. The quality of the prediction system was evaluated by expert judgment; they evaluated efficiency, usability, and functionality. After the calculation, they obtained an average quality of 4.88, which indicates that the quality is very high. In conclusion, the developed prediction system facilitates real estate agencies and their customers the accurate prediction of the price of urban and rural housing, minimizing accuracy errors in price prediction. Benefiting all people interested in the real estate world. © 2023 by the authors of this article. Published under CC-BY. All Rights Reserved.
引用
收藏
页码:85 / 104
页数:19
相关论文
共 50 条
  • [31] Stock Closing Price Prediction Using Machine Learning
    Werawithayaset, Pawee
    Tritilanunt, Suratose
    2019 17TH INTERNATIONAL CONFERENCE ON ICT AND KNOWLEDGE ENGINEERING (ICT&KE), 2019, : 10 - 17
  • [32] Poster:Stock Price Prediction using Machine Learning
    Chen, Kuan-Yu
    Lee, Pei-Ju
    Liu, Shang-Chien
    2023 IEEE 43RD INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS, ICDCS, 2023, : 1067 - 1068
  • [33] Car Price Prediction using Machine Learning Techniques
    Gegic, Enis
    Isakovic, Becir
    Keco, Dino
    Masetic, Zerina
    Kevric, Jasmin
    TEM JOURNAL-TECHNOLOGY EDUCATION MANAGEMENT INFORMATICS, 2019, 8 (01): : 113 - 118
  • [34] House Prices Prediction Using Machine Learning Techniques
    Rao, Yamarthi Narasimha
    Addepalli, Sravanthi Srinivas
    INTERNATIONAL JOURNAL OF EARLY CHILDHOOD SPECIAL EDUCATION, 2022, 14 (02) : 2340 - 2345
  • [35] Share Price Prediction using Machine Learning Technique
    Jeevan, B.
    Naresh, E.
    Kumar, Vijaya B. P.
    Kambli, Prashanth
    2018 3RD INTERNATIONAL CONFERENCE ON CIRCUITS, CONTROL, COMMUNICATION AND COMPUTING (I4C), 2018,
  • [36] An Analysis of Car Price Prediction using Machine Learning
    Bhatnagar, Parth
    Gururaj, H. L.
    Shreyas, J.
    Flammini, Francesco
    Gautam, Shivansh
    PROCEEDINGS OF THE 2024 9TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING TECHNOLOGIES, ICMLT 2024, 2024, : 11 - 15
  • [37] Oil Price Prediction Using Ensemble Machine Learning
    Gabralla, Lubna A.
    Jammazi, Rania
    Abraham, Ajith
    2013 INTERNATIONAL CONFERENCE ON COMPUTING, ELECTRICAL AND ELECTRONICS ENGINEERING (ICCEEE), 2013, : 674 - 679
  • [38] House Price Forecasting by Implementing Machine Learning Algorithms: A Comparative Study
    Joshi, Ishan
    Mudgil, Pooja
    Bisht, Arpit
    INTERNATIONAL CONFERENCE ON INNOVATIVE COMPUTING AND COMMUNICATIONS, ICICC 2022, VOL 3, 2023, 492 : 63 - 71
  • [39] Application of Machine Learning in the Prediction of Hypothyreoidism
    Helac, Hanna
    Kamenjas, Edina
    Hodzic, Nejira
    MEDICON 2023 AND CMBEBIH 2023, VOL 2, 2024, 94 : 756 - 761
  • [40] Application of Machine Learning to the Prediction of WBGT
    Lu, Chang
    Yun, Yeboon
    Yoon, Min
    2021 60TH ANNUAL CONFERENCE OF THE SOCIETY OF INSTRUMENT AND CONTROL ENGINEERS OF JAPAN (SICE), 2021, : 3 - 8