Ballistic electrolyte ion transport with undisturbed pathways for ultrahigh-rate electrochemical energy storage devices

被引:0
|
作者
Cheng, Situo [1 ]
Cao, Zhen [2 ]
Liu, Yupeng [1 ]
Zhang, Junli [1 ]
Cavallo, Luigi [2 ]
Xie, Erqing [1 ]
Fu, Jiecai [1 ]
机构
[1] Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou,730000, China
[2] KAUST Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal,23955-6900, Saudi Arabia
来源
Energy and Environmental Science | 2024年 / 17卷 / 05期
基金
中国国家自然科学基金;
关键词
Density functional theory - Electric discharges - Electrochemical electrodes - Electrolytes - Electronic properties - Energy storage - Ions - Organic polymers - Organometallics;
D O I
暂无
中图分类号
学科分类号
摘要
The efficient charge-discharge process in electrochemical energy storage devices is hinged on the sluggish kinetics of ion migration inside the layered/porous electrodes. Despite the progress achieved in nanostructure configuration and electronic properties engineering, the electrodes require a fluent pathway in the mesoscopic structure to avoid ion accumulation during the (de)intercalation processes. Herein, we carefully designed and validated a robust way of generating long regular channels in electrodes through experiments and density functional theory (DFT) calculations to enhance ion transport efficiency with the prototype of a two-dimensional conjugated metal-organic framework (2D c-MOF). The AA-stacking c-MOF electrode delivers a high areal capacitance (28.7 F cm−2 at 0.2 mV s−1) with a retained capacitance of 15.9 F cm−2 after the charge-discharge rate increases by 50 times, revealing the ultrafast ion kinetics, while the AB-stacking MOF electrode exhibits a capacitance retention of 17.5% (from 16 F cm−2 to 2.8 F cm−2). © 2024 The Royal Society of Chemistry.
引用
收藏
页码:1997 / 2006
相关论文
共 50 条
  • [41] Magnesium ion conducting biopolymer blend-based electrolyte for energy storage application: Electrochemical characteristics
    Aziz, Shujahadeen B.
    Ahmed, Mowfaq J.
    Abdullah, Omed Gh.
    Murad, Ary R.
    Hamad, Samir M.
    Hadi, Jihad M.
    ELECTROCHIMICA ACTA, 2023, 461
  • [42] 3D Printing of Electrochemical Energy Storage Devices: A Review of Printing Techniques and Electrode/Electrolyte Architectures
    Cheng, Meng
    Deivanayagam, Ramasubramonian
    Shahbazian-Yassar, Reza
    BATTERIES & SUPERCAPS, 2020, 3 (02) : 130 - 146
  • [43] Thermoplastic Elastomer-Enabled Smart Electrolyte for Thermoresponsive Self-Protection of Electrochemical Energy Storage Devices
    Shi, Ye
    Ha, Heonjoo
    Al-Sudani, Atheer
    Ellison, Christopher J.
    Yu, Guihua
    ADVANCED MATERIALS, 2016, 28 (36) : 7921 - 7928
  • [44] Bio-Based Plasticized PVA Based Polymer Blend Electrolytes for Energy Storage EDLC Devices: Ion Transport Parameters and Electrochemical Properties
    Aziz, Shujahadeen B.
    Nofal, Muaffaq M.
    Kadir, M. F. Z.
    Dannoun, Elham M. A.
    Brza, Mohamad A.
    Hadi, Jihad M.
    Abdullah, Ranjdar M.
    MATERIALS, 2021, 14 (08)
  • [45] Deciphering the electrochemical behavior of Mn-based electrode-electrolyte coupling system toward advanced electrochemical energy storage devices
    Sun, Zhenheng
    Fu, Jiecai
    Zhang, Yaxiong
    Wang, Yuhu
    Liu, Yupeng
    Cheng, Situo
    Cui, Xiaosha
    Xie, Erqing
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 954
  • [46] Sulfonated Microporous Polymer Membranes with Fast and Selective Ion Transport for Electrochemical Energy Conversion and Storage
    Zuo, Peipei
    Li, Yuanyuan
    Wang, Anqi
    Tan, Rui
    Liu, Yahua
    Liang, Xian
    Sheng, Fangmeng
    Tang, Gonggen
    Ge, Liang
    Wu, Liang
    Song, Qilei
    McKeown, Neil B.
    Yang, Zhengjin
    Xu, Tongwen
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (24) : 9564 - 9573
  • [47] Development of Li-ion-conducting electrolyte using cellulose acetate-LiBr for energy storage devices
    Devi, S. Kamatchi
    Shanmugapriya, C.
    Selvasekarapandian, S.
    Hazaana, S. Aafrin
    Vignesh, N. Muniraj
    Saranya, R.
    IONICS, 2025, 31 (02) : 1577 - 1595
  • [48] Recent enterprises in high-rate monolithic photo- electrochemical energy harvest and storage devices
    Turner, Daniel
    Li, Ming
    Grant, David
    Ola, Oluwafunmilola
    CURRENT OPINION IN ELECTROCHEMISTRY, 2023, 38
  • [49] Electrochemical Energy Storage with an Aqueous Zinc-Quinone Chemistry Enabled by a Mediator-Ion Solid Electrolyte
    Yu, Xingwen
    Manthiram, Arumugam
    ACS APPLIED ENERGY MATERIALS, 2018, 1 (02): : 273 - 277
  • [50] Vanadium dioxide (IV) (B) nanostructures prepared via electrodeposition for zinc-ion storage in electrochemical energy storage devices
    Lai, Xiaojuan
    Li, Yihao
    Yang, Yifan
    Zhou, Zixiang
    Wang, Chao
    JOURNAL OF ENERGY STORAGE, 2024, 102