Secured Computation Offloading in Multi-Access Mobile Edge Computing Networks through Deep Reinforcement Learning

被引:0
|
作者
Abdullah R. [1 ]
Yaacob N.A. [2 ]
Salameh A.A. [3 ]
Zaki N.A.M. [4 ]
Bahardin N.F. [5 ]
机构
[1] Faculty of Engineering, Universitas Negeri Padang, Padang
[2] School of Technology Management and Logistics, Universiti Utara Malaysia, Kedah
[3] Department of Management Information Systems, College of Business Administration, Prince Sattam Bin Abdulaziz University, Al-Kharj
[4] Faculty of Business, Economics and Social Development, Universiti Malaysia Terengganu, Terengganu
[5] Department of Built Environment and Technology, College of Built Environment, UiTM Perak Branch, Perak
关键词
computation offloading; deep reinforcement learning (DRL); mobile edge computing (MEC); multi-access networks; resource allocation; security; task efficiency;
D O I
10.3991/ijim.v18i11.49051
中图分类号
学科分类号
摘要
Mobile edge computing (MEC) has emerged as a pivotal technology to address the computational demands of resource-constrained mobile devices by offloading tasks to nearby edge servers. However, ensuring the security and efficiency of computation offloading in multi-access MEC networks remains a critical challenge. This paper proposes a novel approach that leverages deep reinforcement learning (DRL) for secure computation offloading in multi-access MEC networks. The proposed framework utilizes DRL agents to dynamically make offloading decisions based on the current network conditions, resource availability, and security requirements. The agents learn optimal offloading policies through interactions with the environment, aiming to maximize task completion efficiency while minimizing security risks. To enhance security, the framework integrates encryption techniques and access control mechanisms to protect sensitive data during offloading. The proposed approach undergoes comprehensive simulations to assess its performance in terms of security, efficiency, and scal-ability. The results demonstrate that the DRL-based approach effectively balances the trade-offs between security and efficiency, achieving robust and adaptive computation offloading in multi-access MEC networks. This study contributes to advancing the state-of-the-art in secure and efficient mobile edge computing systems, fostering the development of intelligent and resilient MEC solutions for future mobile networks. © 2024 by the authors of this article. Published under CC-BY.
引用
收藏
页码:80 / 91
页数:11
相关论文
共 50 条
  • [1] Task Computation Offloading for Multi-Access Edge Computing via Attention Communication Deep Reinforcement Learning
    Li, Kexin
    Wang, Xingwei
    He, Qiang
    Yang, Mingzhou
    Huang, Min
    Dustdar, Schahram
    IEEE TRANSACTIONS ON SERVICES COMPUTING, 2023, 16 (04) : 2985 - 2999
  • [2] Computation Offloading in Multi-Access Edge Computing Using a Deep Sequential Model Based on Reinforcement Learning
    Wang, Jin
    Hu, Jia
    Min, Geyong
    Zhan, Wenhan
    Ni, Qiang
    Georgalas, Nektarios
    IEEE COMMUNICATIONS MAGAZINE, 2019, 57 (05) : 64 - 69
  • [3] Deep Reinforcement Learning for Dependent Task Offloading in Multi-Access Edge Computing
    Ye, Hengzhou
    Li, Jiaming
    Lu, Qiu
    IEEE ACCESS, 2024, 12 : 166281 - 166297
  • [4] Computation Offloading for Multi-Access Mobile Edge Computing in Ultra-Dense Networks
    Guo, Hongzhi
    Liu, Jiajia
    Zhang, Jie
    IEEE COMMUNICATIONS MAGAZINE, 2018, 56 (08) : 14 - 19
  • [5] Online Computation Offloading in NOMA-Based Multi-Access Edge Computing: A Deep Reinforcement Learning Approach
    Nduwayezu, Maurice
    Quoc-Viet Pham
    Hwang, Won-Joo
    IEEE ACCESS, 2020, 8 : 99098 - 99109
  • [6] Multi-objective deep reinforcement learning for computation offloading in UAV-assisted multi-access edge computing ✩
    Liu, Xu
    Chai, Zheng-Yi
    Li, Ya-Lun
    Cheng, Yan-Yang
    Zeng, Yue
    INFORMATION SCIENCES, 2023, 642
  • [7] Optimization for computational offloading in multi-access edge computing: A deep reinforcement learning scheme
    Wang, Jian
    Ke, Hongchang
    Liu, Xuejie
    Wang, Hui
    Computer Networks, 2022, 204
  • [8] Optimization for computational offloading in multi-access edge computing: A deep reinforcement learning scheme
    Wang, Jian
    Ke, Hongchang
    Liu, Xuejie
    Wang, Hui
    COMPUTER NETWORKS, 2022, 204
  • [9] Computation Offloading in Multi-Access Edge Computing Networks: A Multi-Task Learning Approach
    Yang, Bo
    Cao, Xuelin
    Bassey, Joshua
    Li, Xiangfang
    Kroecker, Timothy
    Qian, Lijun
    ICC 2019 - 2019 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2019,
  • [10] Graph Attention Network Reinforcement Learning Based Computation Offloading in Multi-Access Edge Computing
    Liu, Yuxuan
    Xia, Geming
    Chen, Jian
    Zhang, Danlei
    2023 IEEE 47TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE, COMPSAC, 2023, : 966 - 969