Additive manufacturing and 3D printing of metallic biomaterials

被引:0
|
作者
Chua K. [1 ]
Khan I. [1 ]
Malhotra R. [1 ]
Zhu D. [1 ]
机构
[1] Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY
来源
Engineered Regeneration | 2021年 / 2卷
关键词
3D bioprinting; Alloys; Biodegradable; Implants; Metallic biomaterials;
D O I
10.1016/j.engreg.2021.11.002
中图分类号
学科分类号
摘要
The advancements of 3D printing technology have been combined with the use of metallic biomaterials to create devices and products for the biomedical field. 3D printing has been a revolutionary process that makes the fabrication of metallic biomedical devices highly specific and simultaneously easier than other fabrication methods. The purpose and overall function of each medical device created is dependent on the type of metal used along with its fabrication method. In this review paper, the major characteristics of metallic biomaterials, including iron, magnesium, zinc, titanium, cobalt, and stainless steel, will be discussed. Major considerations of these metallic biomaterials include degradation rate, biocompatibility, and mechanical properties will be addressed. Importantly, various additive manufacturing processes will be described. Depending on the 3D printing method and the use of specific alloys, these properties can be altered to optimize their functionality for purposes such as bone implants, stents, and other devices. © 2022
引用
下载
收藏
页码:288 / 299
页数:11
相关论文
共 50 条
  • [21] Current Biomedical Applications of 3D Printing and Additive Manufacturing
    Ahangar, Pouyan
    Cooke, Megan E.
    Weber, Michael H.
    Rosenzweig, Derek H.
    APPLIED SCIENCES-BASEL, 2019, 9 (08):
  • [22] Governing policies & strategy for 3d printing/additive manufacturing
    Khan, MohdZihabUllah
    Yoga, Mule Jaykumar
    2015 INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING (ICPC), 2015,
  • [23] 3D printing of glass by additive manufacturing techniques: a review
    Dao Zhang
    Xiaofeng Liu
    Jianrong Qiu
    Frontiers of Optoelectronics, 2021, 14 : 263 - 277
  • [24] Additive Manufacturing Technologies: 3D Printing in Organic Synthesis
    Rossi, Sergio
    Puglisi, Alessandra
    Benaglia, Maurizio
    CHEMCATCHEM, 2018, 10 (07) : 1512 - 1525
  • [25] Charting the Environmental Dimensions of Additive Manufacturing and 3D Printing
    Baumers, Martin
    Duflou, Joost R.
    Flanagan, William
    Gutowski, Timothy G.
    Kellens, Karel
    Lifset, Reid
    JOURNAL OF INDUSTRIAL ECOLOGY, 2017, 21 : S9 - S14
  • [26] Special Issue: Additive Manufacturing (AM) and 3D Printing
    Beaman, Joseph
    Bourell, Dave
    Wallace, Darryl
    JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME, 2014, 136 (06):
  • [27] 3D printing of glass by additive manufacturing techniques:a review
    Dao ZHANG
    Xiaofeng LIU
    Jianrong QIU
    Frontiers of Optoelectronics, 2021, 14 (03) : 263 - 277
  • [28] Application prospect of additive manufacturing technology in 3D printing
    Ma, Xueliang
    FRONTIERS OF CHEMICAL ENGINEERING, METALLURGICAL ENGINEERING AND MATERIALS II, 2013, 803 : 409 - 412
  • [29] Printability of elastomer as a 3D printing material for additive manufacturing
    Archisman Dasgupta
    Prasenjit Dutta
    Journal of Rubber Research, 2024, 27 : 137 - 157
  • [30] Additive manufacturing 3d printing technology and HIP/CIP
    Nomura, Naoyuki
    Masuoka, Itaru
    Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2020, 67 (02):