Leak detection in water distribution network using machine learning techniques

被引:1
|
作者
Sourabh N. [1 ]
Timbadiya P.V. [1 ]
Patel P.L. [1 ]
机构
[1] Department of Civil Engineering, Sardar Vallabhbhai National Institute of Technology-Surat, Gujarat, Surat
关键词
artificial neural network; EPANET software; leak detection; MATLAB programming; support vector machines;
D O I
10.1080/09715010.2023.2198988
中图分类号
学科分类号
摘要
Leakage in the water distribution system (WDS) and its control has been challenging for water resources fraternity for management of precious water demand. This study examines an inverse engineering technique to find the leaks in water supply pipelines. The main objective of the study has been to identify the patterns of deviations in the pressure/flow in the network, due to a single leak in the network, by solving classification and regression problems using artificial neural networks (ANNs) and support vector machines (SVMs). The leak detections were solved using two scenarios, wherein, (a) only pressure measurements and (b) only flow measurements, are undertaken in the system. The multi-layered perceptron (MLP) model and multi-label multi-class SVM classification and regression models were developed and trained using the pressure and flow signals, separately. It was found that the ANN model performed better than the SVM model in pressure- and flow-based leak detection in both classification and regression problems. The model performance could also be improved by optimizing the number of inputs to the model during the training phase. The present study would be useful for water supply management while applying the techniques for minimizing the losses in the water supply network due to leakages. © 2023 Indian Society for Hydraulics.
引用
收藏
页码:177 / 195
页数:18
相关论文
共 50 条
  • [41] Supervised Machine Learning Approaches for Leak Localization in Water Distribution Systems: Impact of Complexities of Leak Characteristics
    Basnet, Lochan
    Brill, Downey
    Ranjithan, Ranji
    Mahinthakumar, Kumar
    JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT, 2023, 149 (08)
  • [42] Leak Localization in Water Distribution Networks using Deep Learning
    Javadiha, Mohammadreza
    Blesa, Joaquim
    Soldevila, Adria
    Puig, Vicenc
    2019 6TH INTERNATIONAL CONFERENCE ON CONTROL, DECISION AND INFORMATION TECHNOLOGIES (CODIT 2019), 2019, : 1426 - 1431
  • [43] Leakage detection in water distribution networks using machine-learning strategies
    Sousa, Diego
    Du, Rong
    da Silva Jr, Jose Mairton Barros
    Cavalcante, Charles Casimiro
    Fischione, Carlo
    WATER SUPPLY, 2023, 23 (03) : 1115 - 1126
  • [44] EDIMA: Early Detection of IoT Malware Network Activity Using Machine Learning Techniques
    Kumar, Ayush
    Lim, Teng Joon
    2019 IEEE 5TH WORLD FORUM ON INTERNET OF THINGS (WF-IOT), 2019, : 289 - 294
  • [45] Design and Development of an Efficient Network Intrusion Detection System Using Machine Learning Techniques
    Rincy, Thomas N.
    Gupta, Roopam
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2021, 2021
  • [46] Temperature-Effect Compensation for Leak Detectors by Using Machine Learning Techniques
    Ferrando Chacon, Juan Luis
    Garcia Gangoiti, Ander
    Oregui Biain, Xabier
    Bilbao, Andoni
    Fernandez, Eneko
    Etxegoien, Zelmar
    16TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING MODELS IN INDUSTRIAL AND ENVIRONMENTAL APPLICATIONS (SOCO 2021), 2022, 1401 : 536 - 545
  • [47] Improving statistical approach for memory leak detection using machine learning
    Šor, Vladimir
    Oü, Plumbr
    Treier, Tarvo
    Srirama, Satish Narayana
    IEEE International Conference on Software Maintenance, ICSM, 2013, : 544 - 547
  • [48] Improving statistical approach for memory leak detection using machine learning
    Sor, Vladimir
    Treier, Tarvo
    Srirama, Satish Narayana
    2013 29TH IEEE INTERNATIONAL CONFERENCE ON SOFTWARE MAINTENANCE (ICSM), 2013, : 544 - 547
  • [49] Intrusion Detection Using Machine Learning and Deep Learning Techniques
    Calisir, Sinan
    Atay, Remzi
    Pehlivanoglu, Meltem Kurt
    Duru, Nevcihan
    2019 4TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ENGINEERING (UBMK), 2019, : 656 - 660
  • [50] Supervised Machine Learning Techniques for Efficient Network Intrusion Detection
    Aboueata, Nada
    Alrasbi, Sara
    Erbad, Aiman
    Kassler, Andreas
    Bhamare, Deval
    2019 28TH INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATION AND NETWORKS (ICCCN), 2019,