Variable Convolution and Pooling Convolutional Neural Network for Text Sentiment Classification

被引:0
|
作者
Dong M. [1 ]
Li Y. [1 ]
Tang X. [1 ]
Xu J. [2 ]
Bi S. [1 ]
Cai Y. [2 ]
机构
[1] School of Computer Science and Engineering, South China University of Technology, Guangzhou
[2] School of Software Engineering, South China University of Technology, Guangzhou
基金
中国国家自然科学基金;
关键词
CNN; deep learning; Text sentiment classification;
D O I
10.1109/aCCESS.2020.2966726
中图分类号
学科分类号
摘要
With the popularity of the internet, the expression of emotions and methods of communication are becoming increasingly abundant, and most of these emotions are transmitted in text form. Text sentiment classification research mainly includes three methods based on sentiment dictionaries, machine learning and deep learning. In recent years, many deep learning-based works have used TextCNN (text convolution neural network) to extract text semantic information for text sentiment analysis. However, TextCNN only considers the length of the sentence when extracting semantic information. It ignores the semantic features between word vectors and only considers the maximum feature value of the feature image in the pooling layer without considering other information. Therefore, in this paper, we propose a convolutional neural network based on multiple convolutions and pooling for text sentiment classification (variable convolution and pooling convolution neural network, VCPCNN). There are three contributions in this paper. First, a multiconvolution and pooling neural network is proposed for the TextCNN network structure. Second, four convolution operations are introduced in the word embedding dimension or direction, which are helpful for mining the local features on the semantic dimensions of word vectors. Finally, average pooling is introduced in the pooling layer, which is beneficial for saving the important feature information of the extracted features. The verification test was carried out on four emotional datasets, including English emotional polarity, Chinese emotional polarity, Chinese subjective and objective emotion and Chinese multicategory. Our apporach is effective in that its result was up to 1.97% higher than that of the TextCNN network. © 2013 IEEE.
引用
收藏
页码:16174 / 16186
页数:12
相关论文
共 50 条
  • [41] A Dynamic Convolutional Neural Network Approach for Legal Text Classification
    Hammami, Eya
    Faiz, Rim
    Akermi, Imen
    INFORMATION AND KNOWLEDGE SYSTEMS: DIGITAL TECHNOLOGIES, ARTIFICIAL INTELLIGENCE AND DECISION MAKING, ICIKS 2021, 2021, 425 : 71 - 84
  • [42] Impact of convolutional neural network and FastText embedding on text classification
    Umer, Muhammad
    Imtiaz, Zainab
    Ahmad, Muhammad
    Nappi, Michele
    Medaglia, Carlo
    Choi, Gyu Sang
    Mehmood, Arif
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (04) : 5569 - 5585
  • [43] Application of an Improved Convolutional Neural Network Algorithm in Text Classification
    Peng, Jing
    Huo, Shuquan
    JOURNAL OF WEB ENGINEERING, 2024, 23 (03): : 315 - 340
  • [44] News Text Classification Based on an Improved Convolutional Neural Network
    Tao, Wenjing
    Chang, Dan
    TEHNICKI VJESNIK-TECHNICAL GAZETTE, 2019, 26 (05): : 1400 - 1409
  • [45] TextConvoNet: a convolutional neural network based architecture for text classification
    Sanskar Soni
    Satyendra Singh Chouhan
    Santosh Singh Rathore
    Applied Intelligence, 2023, 53 : 14249 - 14268
  • [46] Convolutional Neural Network with Contextualized Word Embedding for Text Classification
    Fan, Gaoyang
    Zhu, Cui
    Zhu, Wenjun
    2019 INTERNATIONAL CONFERENCE ON IMAGE AND VIDEO PROCESSING, AND ARTIFICIAL INTELLIGENCE, 2019, 11321
  • [47] Thai Text Detection and Classification Using Convolutional Neural Network
    Malakar, Susanta
    Chiracharit, Werapon
    2020 59TH ANNUAL CONFERENCE OF THE SOCIETY OF INSTRUMENT AND CONTROL ENGINEERS OF JAPAN (SICE), 2020, : 99 - 102
  • [48] Impact of convolutional neural network and FastText embedding on text classification
    Muhammad Umer
    Zainab Imtiaz
    Muhammad Ahmad
    Michele Nappi
    Carlo Medaglia
    Gyu Sang Choi
    Arif Mehmood
    Multimedia Tools and Applications, 2023, 82 : 5569 - 5585
  • [49] TextConvoNet: a convolutional neural network based architecture for text classification
    Soni, Sanskar
    Chouhan, Satyendra Singh
    Rathore, Santosh Singh
    APPLIED INTELLIGENCE, 2023, 53 (11) : 14249 - 14268
  • [50] Heterogeneous graph convolutional neural network for short text classification
    Huang B.
    Li P.
    Fang Z.
    Lei L.
    Wang C.
    International Journal of Intelligent Systems Technologies and Applications, 2023, 21 (04) : 344 - 365