Nonstationary thermoelectric effect in He II and the effect on it of the transition from the laminar to turbulent regime of thermal vibrations

被引:0
|
作者
Natsik, V.D.
Rybalko, A.S.
机构
来源
Fizika Nizkikh Temperatur | 2020年 / 46卷 / 01期
关键词
Superfluid helium;
D O I
暂无
中图分类号
学科分类号
摘要
The observation of a nonstationary thermoelectric effect — a spontaneous electric polarization of a cell with liquid He II under thermal excitation of standing waves of a second sound in it — was confirmed (Fiz. Nizk. Temp. З0, 1321 (2004)). In the temperature range 1.4 K 0(Т) was registered: in the region w 0, the potential oscillations are regular and their amplitude increases in proportion to the power; when w > w0, the electrical response acquires a random character with an increase in fluctuations and an amplitude decreasing to zero, a kind of electromagnetic noise is observed. The results of the experiments are compared with the conclusions of the theory of flexoelectric polarization of liquid helium. The polarization of liquid helium upon the excitation of the first sound waves and the shock waves of pressure and temperature is also discussed. © 2020 Institute for Low Temperature Physics and Engineering. All rights reserved.
引用
收藏
页码:33 / 48
相关论文
共 50 条
  • [31] Effect of the surface roughness of blunt cone forebody on the position of laminar-turbulent transition
    Bountin, D. A.
    Gromyko, Yu. V.
    Maslov, A. A.
    Polivanov, P. A.
    Sidorenko, A. A.
    THERMOPHYSICS AND AEROMECHANICS, 2016, 23 (05) : 629 - 638
  • [32] Effect of the surface roughness of blunt cone forebody on the position of laminar-turbulent transition
    D. A. Bountin
    Yu. V. Gromyko
    A. A. Maslov
    P. A. Polivanov
    A. A. Sidorenko
    Thermophysics and Aeromechanics, 2016, 23 : 629 - 638
  • [33] Effect of Roughness of the Blunted Cone Nose-tip on Laminar-Turbulent Transition
    Bountin, D. A.
    Gromyko, Yu., V
    Polivanov, P. A.
    Sidorenko, A. A.
    Maslov, A. A.
    INTERNATIONAL CONFERENCE ON THE METHODS OF AEROPHYSICAL RESEARCH (ICMAR 2016), 2016, 1770
  • [34] Effect of tripping laminar-to-turbulent boundary layer transition on tip vortex cavitation
    Pichon, T
    Pauchet, A
    Astolfi, A
    Fruman, DH
    Billard, JY
    JOURNAL OF SHIP RESEARCH, 1997, 41 (01): : 1 - 9
  • [35] Experimental and numerical study of the effect of gaps on laminar turbulent transition of incompressible boundary layers
    Forte, M.
    Perraud, J.
    Seraudie, A.
    Beguet, S.
    Gentili, L.
    Casalis, G.
    IUTAM-ABCM SYMPOSIUM ON LAMINAR TURBULENT TRANSITION, 2015, 14 : 448 - 458
  • [36] Effect of turbulent-laminar flow transition on degradation of de-NOx catalyst
    Tanno, Kenji
    Makino, Hisao
    Kurose, Ryoichi
    Komori, Satoru
    Shimada, Hiroshi
    Hwang, Seung-Min
    FUEL, 2010, 89 (04) : 855 - 858
  • [37] Comparison of the effect of laminar and turbulent flow regimes on thermal stresses and strains in an annular fin
    Mojtaba Hosseini
    Ali Hatami
    Samira Payan
    Journal of Mechanical Science and Technology, 2020, 34 : 413 - 424
  • [38] Comparison of the effect of laminar and turbulent flow regimes on thermal stresses and strains in an annular fin
    Hosseini, Mojtaba
    Hatami, Ali
    Payan, Samira
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2020, 34 (01) : 413 - 424
  • [39] Mach Wave Effect on Laminar-Turbulent Transition in Supersonic Flow over a Flat Plate
    Q. H. Din
    I. V. Egorov
    A. V. Fedorov
    Fluid Dynamics, 2018, 53 : 690 - 701
  • [40] Effect of triangular roughness elements on pressure drop and laminar-turbulent transition in microchannels and minichannels
    Brackbill, Timothy P.
    Kandlikar, Satish G.
    PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON NANOCHANNELS, MICROCHANNNELS, AND MINICHANNELS, PTS A AND B, 2006, : 747 - 755