Multi-objective Feature Attribution Explanation for Explainable Machine Learning

被引:1
|
作者
Wang Z. [1 ]
Huang C. [1 ]
Li Y. [2 ]
Yao X. [1 ,3 ]
机构
[1] Research Institute of Trustworthy Autonomous Systems, Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, Departmentof Computer Science and Engineering, Southern University of Science and Technology, Shenzhen
[2] The Advanced Cognitive Technology Lab, Huawei Technologies Co. Ltd, Shanghai
[3] School of Computer Science, University of Birmingham, Birmingham
基金
中国国家自然科学基金;
关键词
Explainable machine learning; feature attribution explanations; multi-objective evolutionary algorithms; multi-objective learning;
D O I
10.1145/3617380
中图分类号
学科分类号
摘要
The feature attribution-based explanation (FAE) methods, which indicate how much each input feature contributes to the model's output for a given data point, are one of the most popular categories of explainable machine learning techniques. Although various metrics have been proposed to evaluate the explanation quality, no single metric could capture different aspects of the explanations. Different conclusions might be drawn using different metrics. Moreover, during the processes of generating explanations, existing FAE methods either do not consider any evaluation metric or only consider the faithfulness of the explanation, failing to consider multiple metrics simultaneously. To address this issue, we formulate the problem of creating FAE explainable models as a multi-objective learning problem that considers multiple explanation quality metrics simultaneously. We first reveal conflicts between various explanation quality metrics, including faithfulness, sensitivity, and complexity. Then, we define the considered multi-objective explanation problem and propose a multi-objective feature attribution explanation (MOFAE) framework to address this newly defined problem. Subsequently, we instantiate the framework by simultaneously considering the explanation's faithfulness, sensitivity, and complexity. Experimental results comparing with six state-of-The-Art FAE methods on eight datasets demonstrate that our method can optimize multiple conflicting metrics simultaneously and can provide explanations with higher faithfulness, lower sensitivity, and lower complexity than the compared methods. Moreover, the results have shown that our method has better diversity, i.e., it provides various explanations that achieve different tradeoffs between multiple conflicting explanation quality metrics. Therefore, it can provide tailored explanations to different stakeholders based on their specific requirements. © 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
引用
收藏
相关论文
共 50 条
  • [1] Multi-Objective Feature Selection in QSAR Using a Machine Learning Approach
    Soto, Axel J.
    Cecchini, Rocio L.
    Vazquez, Gustavo E.
    Ponzoni, Ignacio
    QSAR & COMBINATORIAL SCIENCE, 2009, 28 (11-12): : 1509 - 1523
  • [2] Multi-objective Genetic Programming for Explainable Reinforcement Learning
    Videau, Mathurin
    Leite, Alessandro
    Teytaud, Olivier
    Schoenauer, Marc
    GENETIC PROGRAMMING (EUROGP 2022), 2022, : 278 - 293
  • [3] Multi-objective Decision in Machine Learning
    de Medeiros T.H.
    Rocha H.P.
    Torres F.S.
    Takahashi R.H.C.
    Braga A.P.
    Braga, Antônio Pádua (apbraga@ufmg.br), 1600, Springer Science and Business Media, LLC (28): : 217 - 227
  • [4] Fuzzy Multi-objective Sparse Feature Learning
    Li, Na
    Lei, Yu
    Shi, Jiao
    Gong, Maoguo
    2017 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2017, : 466 - 473
  • [5] Multi-Objective Evolution of Machine Learning Workflows
    Kren, Tomas
    Pilat, Martin
    Neruda, Roman
    2017 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2017,
  • [6] Accelerating surrogate assisted evolutionary algorithms for expensive multi-objective optimization via explainable machine learning
    Li, Bingdong
    Yang, Yanting
    Liu, Dacheng
    Zhang, Yan
    Zhou, Aimin
    Yao, Xin
    SWARM AND EVOLUTIONARY COMPUTATION, 2024, 88
  • [7] A multi-objective optimization design to generate surrogate machine learning models in explainable artificial intelligence applications
    Monteiro, Wellington Rodrigo
    Reynoso-Meza, Gilberto
    EURO JOURNAL ON DECISION PROCESSES, 2023, 11
  • [8] LASSO multi-objective learning algorithm for feature selection
    Frederico Coelho
    Marcelo Costa
    Michel Verleysen
    Antônio P. Braga
    Soft Computing, 2020, 24 : 13209 - 13217
  • [9] LASSO multi-objective learning algorithm for feature selection
    Coelho, Frederico
    Costa, Marcelo
    Verleysen, Michel
    Braga, Antonio P.
    SOFT COMPUTING, 2020, 24 (17) : 13209 - 13217
  • [10] Fairer Machine Learning Through Multi-objective Evolutionary Learning
    Zhang, Qingquan
    Liu, Jialin
    Zhang, Zeqi
    Wen, Junyi
    Mao, Bifei
    Yao, Xin
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2021, PT IV, 2021, 12894 : 111 - 123