A Streamlined Attention Mechanism for Image Classification and Fine-Grained Visual Recognition

被引:0
|
作者
Dakshayani Himabindu D. [1 ,2 ]
Praveen Kumar S. [1 ]
机构
[1] Department of CSE, GIT, GITAM University
[2] Department of IT, VNRVJIET
来源
Dakshayani Himabindu, D. (dakshayanihimabindu_d@vnrvjiet.in) | 1600年 / Brno University of Technology卷 / 27期
关键词
Channel Attention; Deep Learning; Fine-Grained Visual Recognition; Image Classification; Spatial Attention; Visual Attention;
D O I
10.13164/mendel.2021.2.059
中图分类号
学科分类号
摘要
In the recent advancements attention mechanism in deep learning had played a vital role in proving better results in tasks under computer vision. There exists multiple kinds of works under attention mechanism which includes under image classification, fine-grained visual recognition, image captioning, video captioning, object detection and recognition tasks. Global and local attention are the two attention based mechanisms which helps in interpreting the attentive partial. Considering this criteria, there exists channel and spatial attention where in channel attention considers the most attentive channel among the produced block of channels and spatial attention considers which region among the space needs to be focused on. We have proposed a streamlined attention block module which helps in enhancing the feature based learning with less number of additional layers i.e., a GAP layer followed by a linear layer with an incorporation of second order pooling (GSoP) after every layer in the utilized encoder. This mechanism has produced better range dependencies by the conducted experimentation. We have experimented our model on CIFAR-10, CIFAR-100 and FGVC-Aircrafts datasets considering finegrained visual recognition. We were successful in achieving state-of-the-result for FGVC-Aircrafts with an accuracy of 97%. © 2021, Brno University of Technology. All rights reserved.
引用
下载
收藏
页码:59 / 67
页数:8
相关论文
共 50 条
  • [41] Fine-grained image retrieval by combining attention mechanism and context information
    Xiaoqing Li
    Jinwen Ma
    Neural Computing and Applications, 2023, 35 : 1881 - 1897
  • [42] Integrating Scene Text and Visual Appearance for Fine-Grained Image Classification
    Bai, Xiang
    Yang, Mingkun
    Lyu, Pengyuan
    Xu, Yongchao
    Luo, Jiebo
    IEEE ACCESS, 2018, 6 : 66322 - 66335
  • [43] Image local structure information learning for fine-grained visual classification
    Jin Lu
    Weichuan Zhang
    Yali Zhao
    Changming Sun
    Scientific Reports, 12
  • [44] Image local structure information learning for fine-grained visual classification
    Lu, Jin
    Zhang, Weichuan
    Zhao, Yali
    Sun, Changming
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [45] Research on plant seeds recognition based on fine-grained image classification
    Yuan, Min
    Dong, Yongkang
    Lu, Fuxiang
    Zhan, Kun
    Zhu, Liye
    Shen, Jiacheng
    Ren, Dingbang
    Hu, Xiaowen
    Lv, Ningning
    JOURNAL OF ELECTRONIC IMAGING, 2023, 32 (05)
  • [46] Attention Bilinear Pooling for Fine-Grained Classification
    Wang, Wenqian
    Zhang, Jun
    Wang, Fenglei
    SYMMETRY-BASEL, 2019, 11 (08):
  • [47] Robust Fine-Grained Visual Recognition With Neighbor-Attention Label Correction
    Mao, Shunan
    Zhang, Shiliang
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 2614 - 2626
  • [48] A Fine-Grained Image Classification and Detection Method Based on Convolutional Neural Network Fused with Attention Mechanism
    Zhang, Yue
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [49] A weakly supervised spatial group attention network for fine-grained visual recognition
    Xie, Jiangjian
    Zhong, Yujie
    Zhang, Junguo
    Zhang, Changchun
    Schuller, Bjoern W.
    APPLIED INTELLIGENCE, 2023, 53 (20) : 23301 - 23315
  • [50] A weakly supervised spatial group attention network for fine-grained visual recognition
    Jiangjian Xie
    Yujie Zhong
    Junguo Zhang
    Changchun Zhang
    Björn W Schuller
    Applied Intelligence, 2023, 53 : 23301 - 23315