GMIM: Self-supervised pre-training for 3D medical image segmentation with adaptive and hierarchical masked image modeling

被引:0
|
作者
Qi L. [1 ]
Jiang Z. [1 ,2 ]
Shi W. [1 ,2 ]
Qu F. [1 ]
Feng G. [1 ]
机构
[1] Department of Computer Science and Technology, Changchun University of Science and Technology, Jilin, Changchun
[2] Zhongshan Institute of Changchun University of Science and Technology, Guangzhou, Zhongshan
关键词
Brain tumor segmentation; Masked image modeling; Self-supervised learning;
D O I
10.1016/j.compbiomed.2024.108547
中图分类号
学科分类号
摘要
Self-supervised pre-training and fully supervised fine-tuning paradigms have received much attention to solve the data annotation problem in deep learning fields. Compared with traditional pre-training on large natural image datasets, medical self-supervised learning methods learn rich representations derived from unlabeled data itself thus avoiding the distribution shift between different image domains. However, nowadays state-of-the-art medical pre-training methods were specifically designed for downstream tasks making them less flexible and difficult to apply to new tasks. In this paper, we propose grid mask image modeling, a flexible and general self-supervised method to pre-train medical vision transformers for 3D medical image segmentation. Our goal is to guide networks to learn the correlations between organs and tissues by reconstructing original images based on partial observations. The relationships are consistent within the human body and invariant to disease type or imaging modality. To achieve this, we design a Siamese framework consisting of an online branch and a target branch. An adaptive and hierarchical masking strategy is employed in the online branch to (1) learn the boundaries or small contextual mutation regions within images; (2) to learn high-level semantic representations from deeper layers of the multiscale encoder. In addition, the target branch provides representations for contrastive learning to further reduce representation redundancy. We evaluate our method through segmentation performance on two public datasets. The experimental results demonstrate our method outperforms other self-supervised methods. Codes are available at https://github.com/mobiletomb/Gmim. © 2024 Elsevier Ltd
引用
下载
收藏
相关论文
共 50 条
  • [31] Curriculum Self-Supervised Learning for 3D CT Cardiac Image Segmentation
    Taher, Mohammad Reza Hosseinzadeh
    Ikuta, Masaki
    Soni, Ravi
    MACHINE LEARNING FOR HEALTH, ML4H, VOL 225, 2023, 225 : 145 - 156
  • [32] MimCo: Masked Image Modeling Pre-training with Contrastive Teacher
    Zhou, Qiang
    Yu, Chaohui
    Luo, Hao
    Wang, Zhibin
    Li, Hao
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 4487 - 4495
  • [34] Masked Image Modeling Advances 3D Medical Image Analysis
    Chen, Zekai
    Agarwal, Devansh
    Aggarwal, Kshitij
    Safta, Wiem
    Balan, Mariann Micsinai
    Brown, Kevin
    2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 1969 - 1979
  • [35] Anatomical Invariance Modeling and Semantic Alignment for Self-supervised Learning in 3D Medical Image Analysis
    Jiang, Yankai
    Sun, Mingze
    Guo, Heng
    Bai, Xiaoyu
    Yan, Ke
    Lu, Le
    Xu, Minfeng
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 15813 - 15823
  • [36] A self-supervised image aesthetic assessment combining masked image modeling and contrastive learning
    Yang, Shuai
    Wang, Zibei
    Wang, Guangao
    Ke, Yongzhen
    Qin, Fan
    Guo, Jing
    Chen, Liming
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2024, 101
  • [37] A Dual-Stage Semi-Supervised Pre-Training Approach for Medical Image Segmentation
    Aralikatti R.C.
    Pawan S.J.
    Rajan J.
    IEEE Transactions on Artificial Intelligence, 2024, 5 (02): : 556 - 565
  • [38] Masked self-supervised pre-training model for EEG-based emotion recognition
    Hu, Xinrong
    Chen, Yu
    Yan, Jinlin
    Wu, Yuan
    Ding, Lei
    Xu, Jin
    Cheng, Jun
    COMPUTATIONAL INTELLIGENCE, 2024, 40 (03)
  • [39] SEMI-SUPERVISED AND SELF-SUPERVISED COLLABORATIVE LEARNING FOR PROSTATE 3D MR IMAGE SEGMENTATION
    Osman, Yousuf Babiker M.
    Li, Cheng
    Huang, Weijian
    Elsayed, Nazik
    Ying, Leslie
    Zheng, Hairong
    Wang, Shanshan
    2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI, 2023,
  • [40] GeoMAE: Masked Geometric Target Prediction for Self-supervised Point Cloud Pre-Training
    Tian, Xiaoyu
    Ran, Haoxi
    Wang, Yue
    Zhao, Hang
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 13570 - 13580