CrowdGraph: A Crowdsourcing Multi-modal Knowledge Graph Approach to Explainable Fauxtography Detection

被引:1
|
作者
Kou Z. [1 ]
Zhang Y. [1 ]
Zhang D. [2 ]
Wang D. [1 ]
机构
[1] University of Illinois Urbana-Champaign, 614 E. Daniel Street, Champaign, 61820, IL
[2] University of Notre Dame, 384 Fitzpatrick Hall, Notre Dame, Mishawaka, 46556, IN
基金
美国国家科学基金会;
关键词
crowdsourcing; multi modal information; social media;
D O I
10.1145/3555178
中图分类号
学科分类号
摘要
Human-centric fauxtography is a category of multi-modal posts that spread misleading information on online information distribution and sharing platforms such as online social media. The reason of a human-centric post being fauxtography is closely related to its multi-modal content that consists of diversified human and non-human subjects with complex and implicit relationships. In this paper, we focus on an explainable fauxtography detection problem where the goal is to accurately identify and explain why a human-centric social media post is fauxtography (or not). Our problem is motivated by the limitations of current fauxtography detection solutions that focus primarily on the detection task but ignore the important aspect of explaining their results (e.g., why a certain component of the post delivers the misinformation). Two important challenges exist in solving our problem: 1) it is difficult to capture the implicit relations and attributions of different subjects in a fauxtography post given the fact that many of such knowledge is shared between different crowd workers; 2) it is not a trivial task to create a multi-modal knowledge graph from crowd workers to identify and explain human-centric fauxtography posts with multi-modal contents. To address the above challenges, we develop CrowdGraph, a crowdsourcing based multi-modal knowledge graph approach to address the explainable fauxtography detection problem. We evaluate the performance of CrowdGraph by creating a real-world dataset that consists of human-centric fauxtography posts from Twitter and Reddit. The results show that CrowdGraph not only detects the fauxtography posts more accurately than the state-of-The-Arts but also provides well-justified explanations to the detection results with convincing evidence. © 2022 ACM.
引用
下载
收藏
相关论文
共 50 条
  • [31] Multi-modal Question Answering System Driven by Domain Knowledge Graph
    Zhao, Zhengwei
    Wang, Xiaodong
    Xu, Xiaowei
    Wang, Qing
    5TH INTERNATIONAL CONFERENCE ON BIG DATA COMPUTING AND COMMUNICATIONS (BIGCOM 2019), 2019, : 43 - 47
  • [32] Representation and Fusion Based on Knowledge Graph in Multi-Modal Semantic Communication
    Xing, Chenlin
    Lv, Jie
    Luo, Tao
    Zhang, Zhilong
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2024, 13 (05) : 1344 - 1348
  • [33] Towards multi-modal causability with Graph Neural Networks enabling information fusion for explainable AI
    Holzinger, Andreas
    Malle, Bernd
    Saranti, Anna
    Pfeifer, Bastian
    INFORMATION FUSION, 2021, 71 : 28 - 37
  • [34] CROSS-MODAL KNOWLEDGE DISTILLATION IN MULTI-MODAL FAKE NEWS DETECTION
    Wei, Zimian
    Pan, Hengyue
    Qiao, Linbo
    Niu, Xin
    Dong, Peijie
    Li, Dongsheng
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 4733 - 4737
  • [35] On Graph Calculi for Multi-modal Logics
    Veloso, Paulo A. S.
    Veloso, Sheila R. M.
    Benevides, Mario R. F.
    ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2015, 312 : 231 - 252
  • [36] Multi-Source Knowledge Reasoning Graph Network for Multi-Modal Commonsense Inference
    Ma, Xuan
    Yang, Xiaoshan
    Xu, Changsheng
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2023, 19 (04)
  • [37] A multi-modal approach for activity classification and fall detection
    Carlos Castillo, Jose
    Carneiro, Davide
    Serrano-Cuerda, Juan
    Novais, Paulo
    Fernandez-Caballero, Antonio
    Neves, Jose
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2014, 45 (04) : 810 - 824
  • [38] Multi-Modal Sarcasm Detection via Cross-Modal Graph Convolutional Network
    Liang, Bin
    Lou, Chenwei
    Li, Xiang
    Yang, Min
    Gui, Lin
    He, Yulan
    Pei, Wenjie
    Xu, Ruifeng
    PROCEEDINGS OF THE 60TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2022), VOL 1: (LONG PAPERS), 2022, : 1767 - 1777
  • [39] A fast multi-modal approach to facial feature detection
    Boehnen, C
    Russ, T
    WACV 2005: SEVENTH IEEE WORKSHOP ON APPLICATIONS OF COMPUTER VISION, PROCEEDINGS, 2005, : 135 - 142
  • [40] Hyper-node Relational Graph Attention Network for Multi-modal Knowledge Graph Completion
    Liang, Shuang
    Zhu, Anjie
    Zhang, Jiasheng
    Shao, Jie
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2023, 19 (02)