Safety reinforcement learning control via transfer learning

被引:1
|
作者
Zhang, Quanqi [1 ]
Wu, Chengwei [1 ]
Tian, Haoyu [1 ]
Gao, Yabin [1 ]
Yao, Weiran [1 ]
Wu, Ligang [1 ]
机构
[1] Harbin Inst Technol, Dept Control Sci & Engn, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
Reinforcement learning control; Safety; Stability; Transfer learning; LYAPUNOV FUNCTIONS;
D O I
10.1016/j.automatica.2024.111714
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Reinforcement learning (RL) has emerged as a promising approach for modern control systems. However, its success in real-world applications has been limited due to the lack of safety guarantees. To address this issue, the authors present a novel transfer learning framework that facilitates policy training in a non-dangerous environment, followed by transfer of the trained policy to the original dangerous environment. The transferred policy is theoretically proven to stabilize the original system while maintaining safety. Additionally, we propose an uncertainty learning algorithm incorporated in RL that overcomes natural data cascading and data evolution problems in RL to enhance learning accuracy. The transfer learning framework avoids trial-and-error in unsafe environments, ensuring not only after-learning safety but, more importantly, addressing the challenging problem of safe exploration during learning. Simulation results demonstrate the promise of the transfer learning framework for RL safety control on the task of vehicle lateral stability control with safety constraints. (c) 2024 Elsevier Ltd. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [11] Network Slicing via Transfer Learning aided Distributed Deep Reinforcement Learning
    Hu, Tianlun
    Liao, Qi
    Liu, Qiang
    Carle, Georg
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 2909 - 2914
  • [12] Transfer Learning in Deep Reinforcement Learning
    Islam, Tariqul
    Abid, Dm. Mehedi Hasan
    Rahman, Tanvir
    Zaman, Zahura
    Mia, Kausar
    Hossain, Ramim
    PROCEEDINGS OF SEVENTH INTERNATIONAL CONGRESS ON INFORMATION AND COMMUNICATION TECHNOLOGY, ICICT 2022, VOL 1, 2023, 447 : 145 - 153
  • [13] On Normative Reinforcement Learning via Safe Reinforcement Learning
    Neufeld, Emery A.
    Bartocci, Ezio
    Ciabattoni, Agata
    PRIMA 2022: PRINCIPLES AND PRACTICE OF MULTI-AGENT SYSTEMS, 2023, 13753 : 72 - 89
  • [14] TCP Congestion Control with Multiagent Reinforcement and Transfer Learning
    Kasi, Shahrukh Khan
    Das, Saptarshi
    Biswas, Subir
    2021 IEEE 11TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE (CCWC), 2021, : 1507 - 1513
  • [15] Deep reinforcement learning for the control of conjugate heat transfer
    Hachem, E.
    Ghraieb, H.
    Viquerat, J.
    Larcher, A.
    Meliga, P.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 436
  • [16] Transfer Learning via Learning to Transfer
    Wei, Ying
    Zhang, Yu
    Huang, Junzhou
    Yang, Qiang
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [17] Intelligent Inventory Control via Ruminative Reinforcement Learning
    Katanyukul, Tatpong
    Chong, Edwin K. P.
    JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [18] Reinforcement Learning for Quantum Metrology via Quantum Control
    Vedaie, Seyed Shakib
    Palittapongarnpim, Pantita
    Sanders, Barry C.
    2018 IEEE PHOTONICS SOCIETY SUMMER TOPICAL MEETING SERIES (SUM), 2018, : 163 - 164
  • [19] SATELLITE FORMATION CONTROL VIA DEEP REINFORCEMENT LEARNING
    Broida, Jacob
    Linares, Richard
    FIRST IAA/AAS SCITECH FORUM ON SPACE FLIGHT MECHANICS AND SPACE STRUCTURES AND MATERIALS, 2020, 170 : 343 - 352
  • [20] Advanced Building Control via Deep Reinforcement Learning
    Jia, Ruoxi
    Jin, Ming
    Sun, Kaiyu
    Hong, Tianzhen
    Spanos, Costas
    INNOVATIVE SOLUTIONS FOR ENERGY TRANSITIONS, 2019, 158 : 6158 - 6163