Using interpretable machine learning to predict the electrical energy consumption of an electric arc furnace

被引:0
|
作者
Carlsson, Leo S. [1 ]
Samuelsson, Peter B. [1 ]
Jönsson, Pär G. [1 ]
机构
[1] Royal Institute of Technology, Stockholm, Sweden
来源
Stahl und Eisen | 2019年 / 139卷 / 09期
关键词
9;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:24 / 29
相关论文
共 50 条
  • [41] Increasing energy efficiency of the electric arc furnace at TenarisTamsa
    [J]. Martell, F. (fmartell@ingmt.com), 2013, Iron and Steel Society (10):
  • [42] Determination of the Optimum Cost Function for an Electric Arc Furnace and Ladle Furnace System by Using Energy Balance
    Camdali, U.
    Yetisken, Y.
    Ekmekci, I.
    [J]. ENERGY SOURCES PART B-ECONOMICS PLANNING AND POLICY, 2012, 7 (02) : 200 - 212
  • [43] Machine learning for electric energy consumption forecasting: Application to the Paraguayan system
    Morales-Mareco, Felix
    Garcia-Torres, Miguel
    Divina, Federico
    Stalder, Diego H.
    Sauer, Carlos
    [J]. LOGIC JOURNAL OF THE IGPL, 2024, 32 (06) : 1048 - 1072
  • [44] Prediction of energy consumption for new electric vehicle models by machine learning
    Fukushima, Arika
    Yano, Toru
    Imahara, Shuichiro
    Aisu, Hideyuki
    Shimokawa, Yusuke
    Shibata, Yasuhiro
    [J]. IET INTELLIGENT TRANSPORT SYSTEMS, 2018, 12 (09) : 1174 - 1180
  • [45] MANUFACTURING ENERGY CONSUMPTION ESTIMATION USING MACHINE LEARNING
    Song, Ruoyu
    Lu, Yanglong
    Telenko, Cassandra
    Wang, Yan
    [J]. PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2017, VOL 4, 2017,
  • [46] Comparison of data-based models for prediction and optimization of energy consumption in electric arc furnace (EAF)
    Andonovski, Goran
    Tomazic, Simon
    [J]. IFAC PAPERSONLINE, 2022, 55 (20): : 373 - 378
  • [47] Tackling Uncertainty: Forecasting the Energy Consumption and Demand of an Electric Arc Furnace with Limited Knowledge on Process Parameters
    Zawodnik, Vanessa
    Schwaiger, Florian Christian
    Sorger, Christoph
    Kienberger, Thomas
    [J]. ENERGIES, 2024, 17 (06)
  • [48] Influence of electrical parameters on the specific energy consumption and quality of ferrochromium produced in submerged arc furnace.
    Ranganathan, S
    Godiwalla, KM
    Nath, P
    Akbar, SA
    [J]. 58TH ELECTRIC FURNACE CONFERENCE AND 17TH PROCESS TECHNOLOGY CONFERENCE PROCEEDINGS, 2000, 17 : 617 - 624
  • [49] Using Hybrid Machine Learning Methods to Predict and Improve the Energy Consumption Efficiency in Oil and Gas Fields
    Li, Jun
    Guo, Yidong
    Zhang, Xiangyang
    Fu, Zhanbao
    [J]. MOBILE INFORMATION SYSTEMS, 2021, 2021
  • [50] Slag foaming estimation in the electric arc furnace using machine learning based long short-term memory networks
    Son, Kyungchan
    Lee, Jaegak
    Hwang, Haejin
    Jeon, Wonseok
    Yang, Hyunseok
    Sohn, Il
    Kim, Younghwan
    Um, Hyungsic
    [J]. JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2021, 12 : 555 - 568