Toward the end-to-end optimization of particle physics instruments with differentiable programming

被引:11
|
作者
Dorigo T. [1 ,2 ,24 ]
Giammanco A. [1 ,3 ,24 ]
Vischia P. [1 ,3 ,24 ]
Aehle M. [4 ]
Bawaj M. [5 ]
Boldyrev A. [1 ,6 ]
de Castro Manzano P. [1 ,2 ]
Derkach D. [1 ,6 ]
Donini J. [1 ,7 ,24 ]
Edelen A. [8 ]
Fanzago F. [1 ,2 ]
Gauger N.R. [4 ]
Glaser C. [1 ,9 ]
Baydin A.G. [1 ,10 ]
Heinrich L. [1 ,11 ]
Keidel R. [12 ]
Kieseler J. [1 ,13 ]
Krause C. [1 ,14 ]
Lagrange M. [1 ,3 ]
Lamparth M. [1 ,11 ]
Layer L. [1 ,2 ,15 ]
Maier G. [16 ]
Nardi F. [1 ,2 ,7 ,17 ]
Pettersen H.E.S. [18 ]
Ramos A. [19 ]
Ratnikov F. [1 ,6 ]
Röhrich D. [20 ]
de Austri R.R. [19 ]
del Árbol P.M.R. [1 ,21 ]
Savchenko O. [2 ,3 ]
Simpson N. [22 ]
Strong G.C. [1 ,2 ]
Taliercio A. [3 ]
Tosi M. [1 ,2 ,17 ]
Ustyuzhanin A. [1 ,25 ]
Zaraket H. [1 ,23 ]
机构
[1] Istituto Nazionale di Fisica Nucleare, Sezione di Padova
[2] Centre for Cosmology, Particle Physics and Phenomenology (CP3), Université catholique de Louvain
[3] Chair for Scientific Computing, Technische Universität Kaiserslautern
[4] Università di Perugia and INFN, Sezione di Perugia
[5] Université Clermont Auvergne, Laboratoire de Physique de Clermont
[6] Department of Physics and Astronomy, Uppsala University
[7] Department of Computer Science, University of Oxford
[8] Physik-Department, Technische Universität München
[9] Center for Technology and Transfer, University of Applied Sciences Worms
[10] NHETC, Department of Physics and Astronomy, Rutgers University
[11] Department of Oncology and Medical Physics, Haukeland University Hospital
[12] Instituto de Física Corpuscular, UV-CSIC
[13] Department of Physics and Technology, University of Bergen
[14] Instituto de Física de Cantabria, UC-CSIC
[15] Multi-Disciplinary Physics Laboratory, Optics and Fiber Optics Group, Faculty of Sciences, Lebanese University
[16] Constructor University Bremen gGmbH, Campus Ring 1, Bremen
来源
Reviews in Physics | 2023年 / 10卷
基金
欧盟地平线“2020”; 美国国家科学基金会;
关键词
Astrophysics; Differentiable programming; Machine learning; Nuclear physics; Optimization; Particle detectors; Particle physics;
D O I
10.1016/j.revip.2023.100085
中图分类号
学科分类号
摘要
The full optimization of the design and operation of instruments whose functioning relies on the interaction of radiation with matter is a super-human task, due to the large dimensionality of the space of possible choices for geometry, detection technology, materials, data-acquisition, and information-extraction techniques, and the interdependence of the related parameters. On the other hand, massive potential gains in performance over standard, “experience-driven” layouts are in principle within our reach if an objective function fully aligned with the final goals of the instrument is maximized through a systematic search of the configuration space. The stochastic nature of the involved quantum processes make the modeling of these systems an intractable problem from a classical statistics point of view, yet the construction of a fully differentiable pipeline and the use of deep learning techniques may allow the simultaneous optimization of all design parameters. In this white paper, we lay down our plans for the design of a modular and versatile modeling tool for the end-to-end optimization of complex instruments for particle physics experiments as well as industrial and medical applications that share the detection of radiation as their basic ingredient. We consider a selected set of use cases to highlight the specific needs of different applications. © 2023 The Author(s)
引用
收藏
相关论文
共 50 条
  • [31] End-to-end differentiable learning of turbulence models from indirect observations
    Strofer, Carlos A. Michelen
    Xiao, Heng
    THEORETICAL AND APPLIED MECHANICS LETTERS, 2021, 11 (04)
  • [32] End-to-End Differentiable Reactive Molecular Dynamics Simulations Using JAX
    Kaymak, Mehmet Cagri
    Schoenholz, Samuel S.
    Cubuk, Ekin D.
    O’Hearn, Kurt A.
    Merz Jr, Kenneth M.
    Aktulga, Hasan Metin
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2023, 13948 LNCS : 202 - 219
  • [33] Toward End-to-End Deception Detection in Videos
    Karimi, Hamid
    Tang, Jiliang
    Li, Yanen
    2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2018, : 1278 - 1283
  • [34] Toward end-to-end optical system modeling and optimization; a step forward in optical design
    Crowther, BG
    Wassom, SR
    NOVEL OPTICAL SYSTEMS DESIGN AND OPTIMIZATION VII, 2004, 5524 : 196 - 204
  • [35] Automatic differentiable nonequilibrium Green's function formalism: An end-to-end differentiable quantum transport simulator
    Zhouyin, Zhanghao
    Chen, Xiang
    Zhang, Peng
    Wang, Jun
    Wang, Lei
    PHYSICAL REVIEW B, 2023, 108 (19)
  • [36] Enabling Rapid End-to-End Programming of Mobile Manipulators
    Huang, Justin
    COMPANION OF THE 2017 ACM/IEEE INTERNATIONAL CONFERENCE ON HUMAN-ROBOT INTERACTION (HRI'17), 2017, : 343 - 344
  • [37] End-to-End Optimization of Deep Learning Applications
    Sohrabizadeh, Atefeh
    Wang, Jie
    Cong, Jason
    2020 ACM/SIGDA INTERNATIONAL SYMPOSIUM ON FIELD-PROGRAMMABLE GATE ARRAYS (FPGA '20), 2020, : 133 - 139
  • [38] End-to-end Deep Learning of Optimization Heuristics
    Cummins, Chris
    Petoumenos, Pavlos
    Wang, Zheng
    Leather, Hugh
    2017 26TH INTERNATIONAL CONFERENCE ON PARALLEL ARCHITECTURES AND COMPILATION TECHNIQUES (PACT), 2017, : 219 - 232
  • [39] End-to-end learning of multiple sequence alignments with differentiable Smith-Waterman
    Petti, Samantha
    Bhattacharya, Nicholas
    Rao, Roshan
    Dauparas, Justas
    Thomas, Neil
    Zhou, Juannan
    Rush, Alexander M.
    Koo, Peter
    Ovchinnikov, Sergey
    BIOINFORMATICS, 2023, 39 (01)
  • [40] End-to-end Lane Detection through Differentiable Least-Squares Fitting
    Van Gansbeke, Wouter
    De Brabandere, Bert
    Neven, Davy
    Proesmans, Marc
    Van Gool, Luc
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, : 905 - 913