Estimation of global natural gas spot prices using big data and symbolic regression

被引:0
|
作者
Stajić L. [1 ]
Praksová R. [2 ]
Brkić D. [2 ,3 ]
Praks P. [2 ]
机构
[1] Alfatec, Niš
[2] IT4Innovations, VSB – Technical University of Ostrava, Ostrava
[3] Faculty of Electronic Engineering, University of Niš, Niš
基金
欧盟地平线“2020”;
关键词
Market price forecasting; Natural gas; Sensitivity analysis; Spot prices; Supercomputing; Symbolic regression;
D O I
10.1016/j.resourpol.2024.105144
中图分类号
学科分类号
摘要
This article provides an estimation of future natural gas spot prices on the global international market based on symbolic regression where the sensitivity analysis is performed to identify the most important input parameters. Numerical data sets, comprising various parameters, some of which demonstrate stronger correlations with the global spot price of natural gas, are utilised in this context. PySR (Python Symbolic Regression), a free and open-source software for symbolic regression written in Python, and Julia is used for the presented analysis. Based on the accuracy of the prediction and after sensitivity analysis performed in SALib software, some of the parameters are discovered to be more influencing on natural gas prices compared with others, making this approach suitable for further deeper energy analysis. The analysis shows that in general, global prices of natural gas are influenced mostly by the price of crude oil. The article also presents an overview of methods for predicting natural gas prices with a complementary contribution (interpretable models provided by symbolic regression and sensitivity analysis) tested on the real gas price time-series dataset. © 2024 Elsevier Ltd
引用
收藏
相关论文
共 50 条
  • [41] Opportunities and challenges of using big data for global health
    Jia, Peng
    Xue, Hong
    Liu, Shiyong
    Wang, Hao
    Yang, Lijian
    Hesketh, Therese
    Ma, Lu
    Cai, Hongwei
    Liu, Xin
    Wang, Yaogang
    Wang, Youfa
    SCIENCE BULLETIN, 2019, 64 (22) : 1652 - 1654
  • [42] A machine learning approach to big data regression analysis of real estate prices for inferential and predictive purposes
    Ivan Perez-Rave, Jorge
    Carlos Correa-Morales, Juan
    Gonzalez-Echavarria, Favian
    JOURNAL OF PROPERTY RESEARCH, 2019, 36 (01) : 59 - 96
  • [43] Effective feature representation using symbolic approach for classification and clustering of big data
    Lavanya, P. G.
    Kouser, K.
    Suresha, Mallappa
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 173
  • [44] GLOBAL GEODESY USING DORIS DATA ON SPOT-2
    SOUDARIN, L
    CAZENAVE, A
    GEOPHYSICAL RESEARCH LETTERS, 1993, 20 (04) : 289 - 292
  • [45] KERNEL REGRESSION ESTIMATION USING REPEATED MEASUREMENTS DATA
    HART, JD
    WEHRLY, TE
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1986, 81 (396) : 1080 - 1088
  • [46] Dynamic System Identification from Scarce and Noisy Data using Symbolic Regression
    Cohen, Benjamin
    Beykal, Burcu
    Bollas, George
    2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 3670 - 3675
  • [47] ESTIMATION OF EXPONENTIAL REGRESSION PARAMETERS USING BINARY DATA
    CHENG, KF
    WU, JW
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1992, 21 (08) : 2203 - 2214
  • [48] Interpretability in symbolic regression: a benchmark of explanatory methods using the Feynman data set
    Guilherme Seidyo Imai Aldeia
    Fabrício Olivetti de França
    Genetic Programming and Evolvable Machines, 2022, 23 : 309 - 349
  • [49] Identifying interactions in omics data for clinical biomarker discovery using symbolic regression
    Christensen, Niels Johan
    Demharter, Samuel
    Machado, Meera
    Pedersen, Lykke
    Salvatore, Marco
    Stentoft-Hansen, Valdemar
    Iglesias, Miquel Triana
    BIOINFORMATICS, 2022, 38 (15) : 3749 - 3758
  • [50] Interpretability in symbolic regression: a benchmark of explanatory methods using the Feynman data set
    Imai Aldeia, Guilherme Seidyo
    de Franca, Fabricio Olivetti
    GENETIC PROGRAMMING AND EVOLVABLE MACHINES, 2022, 23 (03) : 309 - 349