Online Learning for Network Resource Allocation

被引:1
|
作者
Salem T.S. [1 ]
机构
[1] Inria Centre, Université Côte d'Azur
来源
Performance Evaluation Review | 2023年 / 50卷 / 03期
关键词
E-learning - Ubiquitous computing;
D O I
10.1145/3579342.3579348
中图分类号
学科分类号
摘要
Motivation. Connectivity and ubiquity of computing devices enabled a wide spectrum of network applications such as content delivery, interpersonal communication, and intervehicular communication. New use cases (e.g., autonomous driving, augmented reality, and tactile internet) require satisfying user-generated and machine-generated demand with stringent low-latency and high-bandwidth guarantees. © 2023 Copyright is held by the owner/author(s).
引用
收藏
页码:20 / 23
页数:3
相关论文
共 50 条
  • [21] A Multi-Agent Learning Approach to Online Distributed Resource Allocation
    Zhang, Chongjie
    Lesser, Victor
    Shenoy, Prashant
    21ST INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI-09), PROCEEDINGS, 2009, : 361 - 366
  • [22] Online Learning for Load Balancing of Unknown Monotone Resource Allocation Games
    Bistritz, Ilai
    Bambos, Nicholas
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [23] Safe and Fast Reinforcement Learning for Network Slicing Resource Allocation
    Massaro, Antonio
    Wellington, Dan
    Aghasaryan, Armen
    Seidl, Robert
    Naseer-Ul-Islam, Muhammad
    Bulakci, Oemer
    2023 IEEE 97TH VEHICULAR TECHNOLOGY CONFERENCE, VTC2023-SPRING, 2023,
  • [24] PROMPT: Learning dynamic resource allocation policies for network applications
    Penney, Drew
    Li, Bin
    Sydir, Jaroslaw J.
    Chen, Lizhong
    Tai, Charlie
    Lee, Stefan
    Walsh, Eoin
    Long, Thomas
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2023, 145 : 164 - 175
  • [25] Machine Learning for Dynamic Resource Allocation in Network Function Virtualization
    Schneider, Stefan
    Satheeschandran, Narayanan Puthenpurayil
    Peuster, Manuel
    Karl, Holger
    PROCEEDINGS OF THE 2020 6TH IEEE CONFERENCE ON NETWORK SOFTWARIZATION (NETSOFT 2020): BRIDGING THE GAP BETWEEN AI AND NETWORK SOFTWARIZATION, 2020, : 122 - 130
  • [26] Network Resource Allocation Strategy Based on Deep Reinforcement Learning
    Zhang, Shidong
    Wang, Chao
    Zhang, Junsan
    Duan, Youxiang
    You, Xinhong
    Zhang, Peiying
    IEEE OPEN JOURNAL OF THE COMPUTER SOCIETY, 2020, 1 (01): : 86 - 94
  • [27] Learning-Based Resource Allocation in Heterogeneous Ultradense Network
    Zhang, Xiangyu
    Zhang, Zhengming
    Yang, Luxi
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (20): : 20229 - 20242
  • [28] Dynamic Resource Allocation in Network Slicing with Deep Reinforcement Learning
    Cai, Yue
    Cheng, Peng
    Chen, Zhuo
    Xiang, Wei
    Vucetic, Branka
    Li, Yonghui
    IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 2955 - 2960
  • [29] Deep Reinforcement Learning for Resource Allocation with Network Slicing in Cognitive Radio Network*
    Yuan, Siyu
    Zhang, Yong
    Qie, Wenbo
    Ma, Tengteng
    Li, Sisi
    COMPUTER SCIENCE AND INFORMATION SYSTEMS, 2021, 18 (03) : 979 - 999
  • [30] Resource allocation in wireless networks with federated learning: Network adaptability and learning acceleration
    Lee, Hyun-Suk
    Lee, Da-Eun
    ICT EXPRESS, 2022, 8 (01): : 31 - 36