A constraint energy minimizing generalized multiscale finite element method for parabolic equations

被引:0
|
作者
Li, Mengnan [1 ]
Chung, Eric [2 ]
Jiang, Lijian [3 ]
机构
[1] College of Mathematics and Econometrics, Hunan University, Changsha,410082, China
[2] Department of Mathematics, Chinese University of Hong Kong, Hong Kong, Hong Kong
[3] School of Mathematical Sciences, Tongji University, Shanghai,200092, China
来源
Multiscale Modeling and Simulation | 2019年 / 17卷 / 03期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:996 / 1018
相关论文
共 50 条
  • [41] EXPLICIT AND ENERGY-CONSERVING CONSTRAINT ENERGY MINIMIZING GENERALIZED MULTISCALE DISCONTINUOUS GALERKIN METHOD FOR WAVE PROPAGATION IN HETEROGENEOUS MEDIA
    Cheung, Siu Wun
    Chung, Eric T.
    Efendiev, Yalchin
    Leung, Wing Tat
    MULTISCALE MODELING & SIMULATION, 2021, 19 (04): : 1736 - 1759
  • [42] Generalized Multiscale Finite Element Methods. Nonlinear Elliptic Equations
    Efendiev, Yalchin
    Galvis, Juan
    Li, Guanglian
    Presho, Michael
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2014, 15 (03) : 733 - 755
  • [43] REITERATED MULTISCALE MODEL REDUCTION USING THE GENERALIZED MULTISCALE FINITE ELEMENT METHOD
    Chung, Eric T.
    Efendiev, Yalchin
    Leung, Wing Tat
    Vasilyeva, Maria
    International Journal for Multiscale Computational Engineering, 2016, 14 (06) : 535 - 554
  • [44] Solving parabolic and hyperbolic equations by the generalized finite difference method
    Benito, J. J.
    Urena, F.
    Gavete, L.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 209 (02) : 208 - 233
  • [45] Adaptive finite element method for parabolic equations with Dirac measure
    Gong, Wei
    Liu, Huipo
    Yan, Ningning
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 328 : 217 - 241
  • [46] Discrete maximal regularity and the finite element method for parabolic equations
    Kemmochi, Tomoya
    Saito, Norikazu
    NUMERISCHE MATHEMATIK, 2018, 138 (04) : 905 - 937
  • [47] FINITE-ELEMENT COLLOCATION METHOD FOR QUASILINEAR PARABOLIC EQUATIONS
    DOUGLAS, J
    DUPONT, T
    MATHEMATICS OF COMPUTATION, 1973, 27 (121) : 17 - 28
  • [48] Discrete maximal regularity and the finite element method for parabolic equations
    Tomoya Kemmochi
    Norikazu Saito
    Numerische Mathematik, 2018, 138 : 905 - 937
  • [49] FINITE-ELEMENT METHOD FOR SOLVING NONLINEAR PARABOLIC EQUATIONS
    FARAGO, I
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1991, 21 (01) : 59 - 69
  • [50] The finite element method for semilinear parabolic equations with discontinuous coefficients
    Feng, H
    Shen, LJ
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 1999, 17 (02) : 191 - 198